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Motivation

BIG data and Network Science Technological networks,
e.g., Internet

Visual representation of the the Internet 
from the Opte Project (www.opte.org)

Biological networks,
e.g., neural networks

Maria de la Iglesia-Vaya et al, “Brain Connections 
– Resting State fMRI Functional Connectivity”, 2013 

Social networks
e.g., online social network

Active users in Twitter: 
30M (2010) -> 317M(2016) !
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Motivation

PhD thesis defense of Jithin K. Sreedharan

Complex networks: 

§ Large size
§ Sparse topology
§ Small average distance (small-world)
§ Many triangles
§ Heavy tail degree distribution (scale-free phenomenon)

Some of the issues in the study of large networks
§ What if the network is not known?

Collecting data from the network takes time and huge resources
(limited Application Programming Interface queries, e.g. Twitter)

§ If the whole graph is collected, centralized processing has large 
memory requirements and long delays
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Motivation

§ Sampling: Collecting representative samples in a distributed way

Graph 𝐺

Samples: Independent? 
Any stationary sequence e.g. node ID’s, degrees, number of followers 
or income of the nodes in an online social network etc.

𝑋#, 𝑋%, … , 𝑋'

Sampling
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Motivation

Sampling

Graph 𝐺

§ Estimate global property, 𝜇(𝐺) from 𝑋#, 𝑋%, … , 𝑋'
§ Make inference: How accurate the estimated value is, using 

posterior distribution of the estimator?
Hypothesis testing on the graph using the samples collected

§ Sampling: Collecting representative samples in a distributed way

𝑋#, 𝑋%, … , 𝑋'
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Topics Covered in this Thesis

1. Spectral Decomposition: Sampling in “Spectral Domain”
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Topics Covered in this Thesis

1. Spectral Decomposition: Sampling in “Spectral Domain”

2. Network Sampling with Random Walk 
techniques

Les Misérables network
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Topics Covered in this Thesis

3. Extreme Value Theory and Network Sampling Processes

1. Spectral Decomposition: Sampling in “Spectral Domain”

2. Network Sampling with Random Walk 
techniques

§ All we have is the samples:  𝑋#, 𝑋%, … , 𝑋+
§ Many networks are correlated, e.g., co-authorship n/w
§ Extracting information from the correlated network
§ Answers questions related to extremal events like

• first time to hit a large node
• clusters explored during the sampling process
• …..
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§ Topic 1: Spectral Decomposition: Sampling in “Spectral Domain”

§ Topic 2: Network Sampling with Random Walk techniques
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Applications: Triangle counting, spectral clustering, 
asymptotic variance of random walks etc.
Graph Clustering:
§ More difficult when graph is not known a priori
§ An efficient solution is spectral clustering
§ Requires knowledge of eigenvalues and eigenvectors 

of graph matrices

Motivation

Spectral Decomposition: Sampling in “Spectral Domain”
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Question we address here

§ Symmetric graph matrices like adjacency matrix    , Laplacian 
matrix of undirected graphs

Degrees of nodes
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Question we address here

§ Symmetric graph matrices like adjacency matrix    , Laplacian 
matrix     of an undirected graph 𝐺 = (𝑉, 𝐸)

§ Eigenvalues:
Corresponding eigenvectors:

Scalable and distributed way to find dominant     eigenvalues 
and the eigenvectors 

Problem
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Challenges in Classical Techniques for Finding the Spectrum

§ Power iteration

Drawback: Only principal components, orthonormalization

§ Inverse iteration method Closest eigenvalue to

Eigenvector :

Drawback: Inverse calculation, orthonormalization

Spectral Decomposition: Sampling in “Spectral Domain”

With random walks in [Kempe & McSherry’08]
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Complex Power Iterations: Central Idea

§ Approach based on complex numbers

Spectral Decomposition: Sampling in “Spectral Domain”

Harmonics of      corresponds to eigenvalues

§ Details: from spectral theorem,

Initial vector

§ Let                      , solution of 

Adjacency matrix

Dirac-delta function



Smoothing function
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Complex Power Iterations: Smoothing and a sample plot

Idea of Gaussian smoothing:

Spectral Decomposition: Sampling in “Spectral Domain”

Smoothing parameter
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Complex Power Iterations: Computing the Integral

Discretization:

§ First Order:
§ Higher order: Numerical solution to                        with      as the 

initial value. Use Runge-Kutta (RK) methods. 

Approximation to

Maximum no. of iterations

Interval length in 
Riemann sum

Approximations              :
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Gaussian Smoothing

Spectral Decomposition: Sampling in “Spectral Domain”
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Different Settings

Spectral Decomposition: Sampling in “Spectral Domain”

§ Initialize node with
§ Move weighted copy of fluid to all neighbors    

and to itself

1. Centralized setting : Adjacency matrix is fully known

2. Our distributed approaches

§ Complex diffusion: Asynchronous. Only local information available, 

communicates with all the neighbors
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Different Settings

1. Centralized setting : Adjacency matrix is fully known

2. Our distributed approaches

§ Complex diffusion: Asynchronous. Only local information available, 

communicates with all the neighbors

Spectral Decomposition: Sampling in “Spectral Domain”

Inverse power iteration : For each

Complex diffusion order-1: For all
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Different Settings

1. Centralized setting : Adjacency matrix is fully known

2. Our distributed approaches

§ Complex diffusion: Asynchronous. Only local information available, 

communicates with all the neighbors
§ Monte Carlo Gossiping: Only local information, and  communicates 

with only one neighbor.

Rando walk t.p.m. matrix

: Randomy selected 
neighbor of node 𝑚

Basic	idea:

Degree of node	𝑚
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Implementation with Quantum Random Walk (QRW)

We tried to solve a discretization of

Very similar to classic Schrödinger equation:

Continuous time QRW on a graph:

is a complex amplitude vector 
When measured, the probability of finding QRW  in node at time is

Spectral Decomposition: Sampling in “Spectral Domain”

Hamiltonian operator

wave function

Planck constant
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Sample Path Example

A sample path of classical RW A sample quantum wave function 
of QRW

Spectral Decomposition: Sampling in “Spectral Domain”



18

Rate of Convergence and Scalability

Spectral Decomposition: Sampling in “Spectral Domain”

No. of iterations         depends only on maximum degree.



Spectral Decomposition: Sampling in “Spectral Domain”
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Simulations on Real-World Networks
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Les Misérables network

Complex diffusion

Spectral Decomposition: Sampling in “Spectral Domain”
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Les Misérables network

Spectral Decomposition: Sampling in “Spectral Domain”
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Monte Carlo gossiping Parallel random walk

Les Misérables network

Spectral Decomposition: Sampling in “Spectral Domain”
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Number of nodes: 317K, number of edges: 1M.

DBLP network

Spectral Decomposition: Sampling in “Spectral Domain”
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Conclusions: Distributed Spectral Detection

§ A simple interpretation of spectrum in terms of peaks at eigenvalue points.
§ Developed distributed algorithms at node level based on complex power 

iterations
§ Complex diffusion: each node collects fluid from all the neighbors
§ Complex gossiping: each node collects fluid from one random neighbor
§ Parallel random walk implementation

§ Connection with quantum random walk techniques
§ Derived order of convergence and algorithms are scalable with the 

maximum degree of the graph
§ Extension of algorithms to tackle higher resolution 
§ Numerical simulations on various real-world networks

Spectral Decomposition: Sampling in “Spectral Domain”



PhD thesis defense of Jithin K. Sreedharan 25

§ Topic 1: Spectral Decomposition: Sampling in “Spectral 
Domain”

§ Topic 2: Network Sampling with Random Walk techniques
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Motivation

§ Online Social Network (OSN) users more likely to form edges with 
those with similar attributes?

§ What proportion of a population supports a given political party?
§ Average age of users in an OSN
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Problem definition

§ Undirected graph
§ Node and edge have labels
§ Not necessarily connected or has included 

connected components of interest
§ Few seed nodes
§ Large graph

Let

Seed nodes
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Problem definition (contd.)

Estimate

§ Graph is unknown
§ Only local information available

Seed nodes and their neighbor IDs
Query (visit) a neighbor 
Visited nodes and their neighbor IDs

How do we know in real time if our estimates are accurate?

Network Sampling with Random Walk 

Solution: Sample all the neighbors (snow-ball sampling) ? ?
No, biased towards principal eigenvector. Exponential number of samples 
required
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Random walk based estimation

Estimator for 

Random walk                has unique stationary 
distribution             if graph 𝐺 is connected and non-
bipartite

Estimate
§ Goal:

§ How [Ribeiro and Towsley `10]:

Asymptotically converges

Extensions: [Lee et al. `12], [Gjoka et al. `11] [Ribeiro et al. `12]

Network Sampling with Random Walk 
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We get an estimate of 𝜇 𝐺 but how accurate is it ?
Network Sampling with Random Walk 
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Idea of tours
Properties of tours:
§ Tours are independent
§ Fully distributed crawler implementation

b
a c

d
e

f
gi

h

k
l

mn

pq

r

Issues with tours:
§ Returning to same node will take “forever” 

in a large network [Massoulié et al’06]

§ Solution? Renewal from the most frequent 
node. 
§ No, tours will be interdependent

2|E|

Tour 1 RW node sequence

: most frequent node in sequence

Tour 3
X1 X2
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The idea of Super-node

§ Tackling disconnected graph
§ Faster estimate with shorter 

crawls

Super-node formation: 
§ static and dynamic (will see later)

Network Sampling with Random Walk 32
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Estimator

Length of  𝑘th tour

Samples in 𝑘th tour Degree of super-node

True value of the contracted 
graph

Key property of tours:

𝑓 𝑢, 𝑣 ∶= 𝑔(𝑢, 𝑣)
except when 𝑢 or 𝑣	is 𝑆+

Network Sampling with Random Walk 

Induced	subgraph	from	
the	nodes	inside	𝑆+
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§ Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])

§ Strongly consistent

Estimator

Confidence interval

Sampled 
variance

Network Sampling with Random Walk 
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Bayesian formulation

Network Sampling with Random Walk 

Find a posterior probability distribution

with a suitable prior distribution
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Bayesian formulation (contd.)

Setting: § Available no. of tours = 𝑚

§ Let      be the estimate of         in ℎ-th batch.
§ Assumption: 

(also justifiable via exponentially bounded tour lengths [Aldous and Fill '02]) 

Then	for	large	values	of	𝑚 (𝑚 ≥ 2),

§ Assume priors

§ Divide 					tours into         batches
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Simulations on real-world networks

Dogster network: Online social network for dogs ?

Network Sampling with Random Walk 
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Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

Estimated value



39

Friendster network
64K nodes, 1.25M edges
Percentage of graph covered: 7.43% (edges), 18.52% (nodes)

Estimated value Estimated value

Network Sampling with Random Walk 
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses

How to add nodes to super-node: 

1. via any method as long as independent of already observed tours
2. Emulate presence of new node 𝑖 in super-node      from the start
§ Check previous tours. Break them when 𝑖 is found. 

sample 1 sample 2 ……. sample 𝑘 = 𝑆+
: node 𝑖

Original tour:

Tour 1 Tour 2 Tour 3 Tour 4
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses

How to add nodes to super-node: 

1. via any method as long as independent of already observed tours
2. Emulate presence of new node 𝑖 in super-node      from the start
§ Check previous tours. Break them when 𝑖 is found. 
§ Start 𝑘 new tours from newly added node 𝑖; 

k ~ negative Binomial (function of degrees of 𝑖,        & no of tours)
ba d
e

f
i

h

l

m
n

p

r



40

What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses

How to add nodes to super-node: 

1. via any method as long as independent of already observed tours
2. Emulate presence of new node 𝑖 in super-node      from the start
§ Check previous tours. Break them when 𝑖 is found. 
§ Start 𝑘 new tours from newly added node 𝑖; 

k ~ negative Binomial (function of degrees of 𝑖,        & no of tours)

Theorem
Dynamic and static super-node sample paths are equivalent in distribution
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Conclusions: Network Sampling with Random Walk
§ Unbiased estimator of 

§ Propose dynamic super-node: 

ü Short parallel random walk crawls

ü Parameter-free crawling
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Conclusions: Network Sampling with Random Walk
§ Unbiased estimator of 

§ Propose dynamic super-node: 

ü Short parallel random walk crawls

ü Parameter-free crawling

§ Provides real-time assessment of estimation accuracy:

ü Bayesian formulation: posterior distribution, matches well true histogram



§ Unbiased estimator of 

§ Propose dynamic super-node: 

ü Short parallel random walk crawls

ü Parameter-free crawling

§ Provides real-time assessment of estimation accuracy:

ü Bayesian formulation: posterior distribution, matches well true histogram

§ If the given network forms connections randomly with same node attributes 
and degrees: 

ü Estimation of expected value and variance of

ü Check whether original network value samples from distribution of 

§ Reinforcement-Learning based Sampling: more stable and no burn-in!
41

Conclusions: Network Sampling with Random Walk

𝜇 𝐺 of the generated 
random graph model
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Some	Research	Directions
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Extension of spectral decomposition algorithms:
§ Non-symmetric matrices
§ Parameter-free or automatic procedure for the identification of 

eigenelements
§ Why does Monter Carlo gossiping converge quickly?
Random walk based sampling:
§ Asymptotic variance looks not much studied in literature, compared to 

mixing time, especially in case of random walk sampling in random graphs.
§ Studies on the formation of super-node, effect of super-node selection in 

the asymptotic variance
§ Concentration result for the tour based estimator providing time and 

memory complexities
§ Reinforcement learning needs further study.
Extreme value theory:
§ Relation between extremal index and clustering and assortativity coefficient
§ Deriving extremal index for more general graph correlation models.
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Thank	You!

PhD	thesis	defense	of	Jithin K.	Sreedharan
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Extra slides
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§ Topic 1: Spectral Decomposition: Sampling in “Spectral 
Domain”

§ Topic 2: Network Sampling with Random Walk techniques
§ Topic 2: Extreme Value Theory and Network Sampling 

Processes
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Questions	We	Address	Here…

First	passage	time

Statistical	properties	of	clusters

Kth	largest	value	of	samples	and	many	more	extremal properties

Is	there	a	simple	way	to	get	information	about	many	extremal	
properties?	 Ans:	Extremal Index
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Relation	to	Extreme	Value	Theory

Extremal	Index	(𝜃):

Point Process

Point	process	of	exceedances→Compound	poisson	process	(rate	𝜃𝜏)	

Extreme	Value	Theory	and	Network	Sampling	Processes
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Extremal	Index:	Applications

§ Gives	maxima	of	the	degree	sequence	with	certain	probability

Pareto	case	revisited:	

§ i.i.d.	degrees,	largest	degree≈ 𝐾𝑁#/D,	𝑁 no.	of	nodes,	𝛾 tail	index	of	
Pareto	distribution	(N.	Litvak,	LNCS’12)

§ Stationary	degree	samples	with	EI,	largest	degree≈ 𝐾(𝑁𝜃)#/D

Extreme	Value	Theory	and	Network	Sampling	Processes
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Extremal	Index:	Applications

First	passage	time:

Lower	the	value	of	EI,	more	time	to	hit	extreme	levels

e.g.	Pareto

Extreme	Value	Theory	and	Network	Sampling	Processes
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Extremal	Index:	Applications

Relation	to	Mean	Cluster	Size:

Extreme	Value	Theory	and	Network	Sampling	Processes



Two mixing conditions on the samples

Cond-2:  

Cond-1: Limits long range dependence

Stationary Markov samples or its measurable functions satisfy this

Calculation	of	Extremal Index



If	the	sampled	sequence	is	stationary	and	satisfies	mixing	conditions,	
then	Extremal Index	

Proposition

0 ≤ 𝜃 ≤ 1	and



Degree	Correlations

● Undirected and correlated
● is enough to construct graph

● Crawling via Random Walks on vertices
● Degree sequence is a Hidden Markov chain
● What is the joint stationary distribution on degree state space?



Generation	of	a	Correlated	Graph

1. Degree sequence:

2. Uncorrelated random graph generation with configuration model
3. MCMC Metropolis-Hastings dynamics:

a) Select 2 edges randomly:
, degrees

b) With prob , rewire edges to 

and 

Tail distribution             is given.



Standard Random Walk

Page Rank

Random Walk with Jumps (RWJ)

Meanfield Models



Check	of	Meanfield Model	in	Random	Walks



Extremal	Index	for	Bivariate	Pareto	Model



Empirical Copula based estimator:

Estimation	of	Extremal Index

EI: slope at (1; 1),Linear least square fitting & numerical differentiation

Intervals Estimator: 

Based on



Numerical	Results:	Synthetic	Graphs

EI Analysis Copula based 
estimator

Synthetic graph (5K Nodes) 0.56 0.53

Intervals 
Estimator
0.58

Copula based estr. Intervals Estimator



Numerical	Results:	Real	Graphs

EI Copula based 
estimator

Intervals 
Estimator

DBLP (32K Nodes,1.1M Edges) 0.29 0.25

Enron Email (37K Nodes,368K Edges) 0.61 0.62



PhD	thesis	defense	of	Jithin K.	Sreedharan 37

Conclusions:	Extreme	Value	Theory	(Not	presented)	

§ Associated	Extremal	Value	Theory	of	stationary	sequence	to	sampling	of	large	
graphs

§ For	any	general	stationary	samples	meeting	two	mixing	conditions,	knowledge	of	
bivariate	distribution	or	bivariate	copula	is	sufficient	to	derive	many	extremal	
properties

§ Extremal	Index	(EI)	encapsulates	this	relation
§ Applications	of	EI	to	many	relevant	extrems:	

• First	hitting	time,	Order	statistics,	Mean	cluster	size
§ Modeled	correlation	in	degrees	of	adjacent	nodes	and	random	walk	in	degree	state	
space

§ Estimates	EI	for	synthetic	graph	with	degree	correlations	and	find	a	good	match	
with	theory

§ Estimated	EI	for	two	real	world	networks
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§ Topic 1: Spectral Decomposition: Sampling in “Spectral 
Domain”

§ Topic 2: Network Sampling with Random Walk techniques
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Existing	asymptotic	techniques	and	issues
§ Asymptotic	convergence:	Ergodic	theorem

§ Crawling	the	graph	multiple	times
§ Variety	of	convergence	diagnostics	for	MCMCs
Roughly	divided	into:
§ Multiple	walks	to	check	convergence

§ Walks	not	independent	(start	at	same	seeds)
§ No	guarantees

§ Break	a	long	walk	into	“nearly”	independent	segments
§ Asymptotic	&	throws	away	most	observations

X1 X2 ……. Xk

:	accepted	sample :	rejected	sample

Thrown	away
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From	metric	𝜇(𝐺) does	network	look	random	?
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Estimation	and	hypothesis	testing	in	Chung-Lu	or	configuration	model

75

Assumption:	edges	labels	can	be	written	as	a	function	of	node	labels

§ Does	the	true	value	of	the	given	graph																																				belongs	to	the	class	of	

values	when	the	edges	are	formed	purely	at	random?

§ Does	the	true	value	belongs	to	the	class	when	the	connections	are	formed	

based	on	degrees	alone	with	no	other	influence	?	

Configuration	model:

§ Assume	the	degree	sequence	same	as	that	of	G.

§ Edges	formed	by	uniformly	selecting	the	half	edges	of	each	
node
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Estimation	in	Chung-Lu	or	configuration	model

Estimate

§ The	entire	degree	sequence	unknown;	only	the	
degrees	of	sampled	nodes	known

Random	walk	with	jumps	to	
estimate	𝑔 𝑢, 𝑣 ,	for	 𝑢, 𝑣 ∉ 𝐸
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Hypothesis	testing	with	the	Chung-Lu	model

(Lindeberg central	limit	theorem)

Look	for	the	value	of	𝑎 the	following	satisfies

Estimate	value	of	given	graph Mean	and	variance	of	Chung-Lu	graph

Dogster network:	Estimator	for	

Edge function True value Estimated	value
1{same	breed	nodes} 8.12×10c 8.066×10c

1{different	breed	nodes} 2.17×10f 1.995×10f

Percentage	of	graph	crawled:	8.9%	(edges),	18.51%	(nodes)
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§ Topic 1: Spectral Decomposition: Sampling in “Spectral Domain”

§ Topic 2: Network Sampling with Random Walk techniques
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Enron	email	network

Number	of	nodes:	33K,	number	of	edges:	180K.

Complex	diffusion	order-4 Monte	Carlo	gossiping
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Choice	of	parameters
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Getting	equal	peaks	for	all	eigenvalues
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QRW	Technique
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Different Approaches

Spectral Decomposition: Sampling in “Spectral Domain”

1. Centralized approach: Adjacency matrix is fully known

2. Our distributed approaches

§ Complex diffusion: Asynchronous. Only local information available, 

communicates with all the neighbors
§ Monte Carlo Gossiping: Only local information, and  communicates 

with only one neighbor.

It can be implemented via parallel random walks as well


