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Random Sampling 

No complete picture a priori ! All we have:  𝑋1, 𝑋2, … , 𝑋𝑛  

Samples: any stationary (most likely dependent) sequence e.g. 

node ID’s, degrees, number of followers or income of the nodes in 

OSN etc 



● Assuming i.i.d. degrees, largest degree≈ 𝐾𝑁1/𝛾, 𝑁 no. of nodes, 𝛾 tail 

index of Pareto distribution (N. Litvak et al, LNCS’12) 

● Twitter graph (2012): N= 537M, 𝛾 = 1.124 for out-degree.  

● Largest out-degree predicted is 59M. Actual largest out-degree is 𝟐𝟐M! 

 

Correlations in Graphs and Sampling 

● Correlations in graph properties 

exist in real networks  

    e.g: correlation in Coauthorship 

network  

● Usually neglected in analysis of 

sampling algorithms 

 

 

 

Effect of neglecting correlations: 



First passage time 

Statistical properties of clusters 

Kth largest value of samples and many more extremal properties 

Questions We Address Here… 

Is there a simple way to get information about many extremal 

properties?  Ans: Extremal Index 



Point process of exceedances →Compound poisson process (rate 𝜃𝜏)  

Tendency to form clusters 

Relation to Extreme Value Theory 

Extremal Index (𝜃): 

Point Process 



Extremal Index: Applications 

Gives maxima of the degree sequence with certain probability 

Pareto case revisited:  

● i.i.d. degrees, largest degree≈ 𝐾𝑁1/𝛾, 𝑁 no. of nodes, 𝛾 tail 

index of Pareto distribution (N. Litvak, LNCS’12) 

● Stationary degree samples with EI, largest degree≈ 𝐾(𝑁𝜃)1/𝛾 



Lower the value of EI, more time to hit extreme levels 

First passage time: 

Extremal Index: Applications 

e.g. Pareto 



Relation to Mean Cluster Size: 

Extremal Index: Applications 



Two mixing conditions on the samples 

Cond-2:   

 

Cond-1: Limits long range dependence 

Stationary Markov samples or its measurable functions satisfy this 

Calculation of Extremal Index 



If the sampled sequence is stationary and satisfies mixing conditions, 
then Extremal Index  

 

Proposition 

0 ≤ 𝜃 ≤ 1 and 



Degree Correlations 

● Undirected and correlated 

●            is enough to construct graph 

   

● Crawling via Random Walks on vertices 

● Degree sequence is a Hidden Markov chain 

● What is the joint stationary distribution on degree state space? 

 

 



Standard Random Walk 

Page Rank 

Random Walk with Jumps (RWJ) 

Meanfield Models 



Check of Meanfield Model in Random Walks 



Extremal Index for Bivariate Pareto Model 



Empirical Copula based estimator: 

Estimation of Extremal Index 

 EI: slope at (1; 1),Linear least square fitting & numerical differentiation 

Intervals Estimator:  

Based on 



Numerical Results: Synthetic Graphs 

EI Analysis Copula based  

estimator 

Synthetic graph (5K Nodes) 0.56 0.53 

Intervals  

Estimator 

0.58 

Copula based estr. Intervals Estimator 



Numerical Results: Real Graphs 

EI Copula based  

estimator 

Intervals  

Estimator 

DBLP (32K Nodes,1.1M Edges) 0.29 0.25 

Enron Email (37K Nodes,368K Edges) 

 

0.61 0.62 



● Associated Extremal Value Theory of stationary sequence to 
sampling of large graphs 

● For any general stationary samples meeting two mixing conditions, 
knowledge of bivariate distribution or bivariate copula is sufficient to 
derive many extremal properties 

● Extremal Index (EI) encapsulates this relation 
● Applications of EI to many relevant extrems:  

● First hitting time 
● Order statistics 
● Mean cluster size 

● Modeled correlation in degrees of adjacent nodes and random walk 
in degree state space 

● Estimates of EI for synthetic graph with degree correlations and find 
a good match with theory 

● Estimated EI for two real world networks 

Conclusions 



Thank You! 


