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No complete picture a priori ! All we have: X1,X5, ..., X,

Samples: any stationary (most likely dependent) sequence e.g.

node ID’s, degrees, number of followers or income of the nodes in
OSN etc



CORRELATIONS IN GRAPHS AND SAMPLING

e C(Correlations in graph properties
exist in real networks
e.g: correlation in Coauthorship

network

e Usually neglected in analysis of
sampling algorithms

Effect of neglecting correlations:

e Assuming i.i.d. degrees, largest degreex KN/Y N no. of nodes, y tail
index of Pareto distribution (N. Litvak et al, LNCS'12)
e Twitter graph (2012): N= 537M, y = 1.124 for out-degree.

e Largest out-degree predicted is 59M. Actual largest out-degree is 22M!



QUESTIONS WE ADDRESS HERE...

Cluster of exceedances
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Kth largest value of samples and many more extremal properties

Is there a simple way to get information about many extremal
properties? Ans: Extremal Index




RELATION TO EXTREME VALUE THEORY

Extremal Index (0):

Defintion: If lim,,_, ., E[no of exceedances| = ,

Plmax(X1q,...,X,) <u,] — exp(—760)
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Point process of exceedances =Compound poisson process (rate 1)
Tendency to form clusters



EXTREMAL INDEX: APPLICATIONS

P{max{X,,...,X,,} <z} = FY(z) 4+ o(1),n — oo

Gives maxima of the degree sequence with certain probability

Pareto case revisited:

e ii.d. degrees, largest degreex KNV N no. of nodes, y tail
index of Pareto distribution (N. Litvak, LNCS’12)
e Stationary degree samples with EI, largest degreex~ K(N6)/Y



EXTREMAL INDEX: APPLICATIONS

First passage time:

In asymptotically ~ Exp(61)

E(T,) ~n/(07)
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Lower the value of EI, more time to hit extreme levels

e.g. Pareto P(X; > u,) =u, *, u, =
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EXTREMAL INDEX: APPLICATIONS

Relation to Mean Cluster Size:

Cluster of exceedances
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Extremal Index

lim,, 00 F[cluster size with n samples] =



CALCULATION OF EXTREMAL INDEX

Two mixing conditions on the samples

Cond-1: Limits long range dependence

|P(AB) — P(A)P(B)| < a, A and B: events C {X; < u,}, l, seperated
l, =0(n),a, —0

Stationary Markov samples or its measurable functions satisty this

Cond-2:

Cluster of upcrossings
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lim P(Cluster of upcrossings) < €

n— o0

lim P(Cluster of exceedances) > (1 — ¢)

n—00
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PROPOSITION

If the sampled sequence is stationary and satisfies mixing conditions,
then Extremal Index

0=<1,VC>| _ —1,
0<0<1andC(u,v)=P(X; < F 'u),Xs < F '(v)) is the Copula.

. 4




DEGREE CORRELATIONS

dy
e Undirected and correlated f(di,d2)
e f(di,ds2) is enough to construct graph

e Crawling via Random Walks on vertices
e Degree sequence is a Hidden Markov chain
e What is the joint stationary distribution on degree state space?



Standard Random Walk

ED|f(d¢,d¢s1
Frw (diya]dy) o & FRL e

fRW(dt+1a dt) ~ f(dt+1, dt)
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Page Rank
with ¢, follow RW

with 1 — ¢, uniform node sampling

fPr(diy1lds) = cfrw (diy1lde) + (1 —¢) fa(diyr)

Random Walk with Jumps (RWJ)

— dt
“= dt + «
E(D
frwy(diy1,d) = E[D[] _gaf(dt—l—ladt) + E[Do]qu afd(dt—i—l)fd(dt)




CHECK OF MEANFIELD MODEL IN RANDOM WALKS
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Degree correlation among neighbours, bivariate Pareto distributed

_ dy —p  dy—p\ 77
F(dl,dz):(lJr LR, 22 “) 4=10,0 = 15,7 = 1.2
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EXTREMAL INDEX FOR BIVARIATE PARETO MODEL

] di—p  dy—p\ "
F(dl,d2)~(1+ S “)
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Random Walk: EI =1 —1/27
E[D]
E[D] + «
PageRank: EI > (1 — ¢)

(for any kind of degree correlations)
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Random Walk with Jumps: EI =1 — 27




ESTIMATION OF EXTREMAL INDEX

Empirical Copula based estimator:

RY
n+1 n—+1

EI: slope at (1; 1),Linear least square fitting & numerical differentiation

Intervals Estimator: A S (U)
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Use E(T7) = 2/6 to obtain estimates



NUMERICAL RESULTS: SYNTHETIC (GRAPHS

Degree correlation between neighbours
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NUMERICAL RESULTS: REAL (GRAPHS

EI Copula based |Intervals
estimator Estimator

DBLP (32K Nodes,1.1M Edges) 0.29 0.25

Enron Email (37K Nodes,368K Edges) 0.61 0.62



CONCLUSIONS

e Associated Extremal Value Theory of stationary sequence to
sampling of large graphs
e For any general stationary samples meeting two mixing conditions,
knowledge of bivariate distribution or bivariate copula is sufficient to
derive many extremal properties
e Extremal Index (EI) encapsulates this relation
e Applications of EI to many relevant extrems:
e First hitting time
e Order statistics
e Mean cluster size
e Modeled correlation in degrees of adjacent nodes and random walk
in degree state space
e Estimates of EI for synthetic graph with degree correlations and find
a good match with theory
e Estimated EI for two real world networks



Thank Youl!



