Spectrum Sensing in Cognitive Radios using Distributed Sequential Detection

Jithin K. S.

Research Supervisor: Prof. Vinod Sharma External Examiner: Prof. Shankar Prakriya, IIT Delhi

ECE Dept., Indian Institute of Science, Bangalore

February 4, 2013

- Introduction
- Parametric Distributed Sequential Tests
- Nonparametric Distributed Sequential Tests
- Multihypothesis scenario
- Conclusions

 CR: Radio systems, which perform Radio Environment Analysis, identify spectral holes and operate in those holes.

- CR: Radio systems, which perform Radio Environment Analysis, identify spectral holes and operate in those holes.
- Licensed (Primary) and Unlicensed (Secondary) users

- CR: Radio systems, which perform Radio Environment Analysis, identify spectral holes and operate in those holes.
- Licensed (Primary) and Unlicensed (Secondary) users
- Spectral holes in various dimensions

- CR: Radio systems, which perform Radio Environment Analysis, identify spectral holes and operate in those holes.
- Licensed (Primary) and Unlicensed (Secondary) users
- Spectral holes in various dimensions

Aided by evolving SDR technology

Identify spectral holes and quickly detect the onset of primary transmission

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 *H*₀: Primary user transmission is absent
 *H*₁: Primary user transmission is present
- Primary Techniques:

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present
- Primary Techniques:
 - Matched filter

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present
- Primary Techniques:
 - Matched filter
 - Cyclostationary detector

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present
- Primary Techniques:
 - Matched filter
 - Cyclostationary detector
 - Energy detector

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present
- Primary Techniques:
 - Matched filter
 - Cyclostationary detector
 - Energy detector
- Challenges:

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present
- Primary Techniques:
 - Matched filter
 - Cyclostationary detector
 - Energy detector
- Challenges:
 - Shadowing, Fading and low SNR

- Identify spectral holes and quickly detect the onset of primary transmission
- Spectrum Sensing Hypothesis testing formulation:
 H₀: Primary user transmission is absent
 H₁: Primary user transmission is present
- Primary Techniques:
 - Matched filter
 - Cyclostationary detector
 - Energy detector
- Challenges:
 - Shadowing, Fading and low SNR
 - Sensing Frequency and duration

Cooperative setup

- Mitigates multipath fading, shadowing and hidden node problem.
- ► Improves Probability of Errors (*P_{FA}* and *P_{MD}*) and Expected Detection Delay (*E_{DD}*)
- A distributed statistical inference problem

Cooperative setup

- Mitigates multipath fading, shadowing and hidden node problem.
- ► Improves Probability of Errors (*P_{FA}* and *P_{MD}*) and Expected Detection Delay (*E_{DD}*)
- A distributed statistical inference problem

 Distributed Detection: centralized

 Distributed Detection: centralized/decentralized

- Distributed Detection: centralized/decentralized
- Sampling at CR:

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous /Asynchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous /Asynchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous /Asynchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous /Asynchronous

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous /Asynchronous
- Decision Mechanism: fixed sample size

- Distributed Detection: centralized/decentralized
- Sampling at CR: synchronous /Asynchronous
- Decision Mechanism: fixed sample size /Sequential

Problems addressed in this thesis (Contd.)

 Focus on reducing the number of samples in the cooperative setup with reliability constraints (Decentralized Sequential Hypothesis Testing)
- Focus on reducing the number of samples in the cooperative setup with reliability constraints (Decentralized Sequential Hypothesis Testing)
 - Fast detection of idle TV bands

- Focus on reducing the number of samples in the cooperative setup with reliability constraints (Decentralized Sequential Hypothesis Testing)
 - Fast detection of idle TV bands
 - Quickest detection of unoccupied spectrum in slotted primary user transmission systems

- Focus on reducing the number of samples in the cooperative setup with reliability constraints (Decentralized Sequential Hypothesis Testing)
 - Fast detection of idle TV bands
 - Quickest detection of unoccupied spectrum in slotted primary user transmission systems
- Imprecise estimates of the channel gains and noise power (parameter uncertainty-Composite Sequential Testing)

- Focus on reducing the number of samples in the cooperative setup with reliability constraints (Decentralized Sequential Hypothesis Testing)
 - Fast detection of idle TV bands
 - Quickest detection of unoccupied spectrum in slotted primary user transmission systems
- Imprecise estimates of the channel gains and noise power (parameter uncertainty-Composite Sequential Testing)
- Channel gain statistic unknown (Universal Sequential Testing)

- Focus on reducing the number of samples in the cooperative setup with reliability constraints (Decentralized Sequential Hypothesis Testing)
 - Fast detection of idle TV bands
 - Quickest detection of unoccupied spectrum in slotted primary user transmission systems
- Imprecise estimates of the channel gains and noise power (parameter uncertainty-Composite Sequential Testing)
- Channel gain statistic unknown (Universal Sequential Testing)
- Detect the spectrum and identify the primary user (Decentralized Multihypothesis Sequential Testing)

- Sequential tests: Wald'47, Irle'84
- Decentralized Sequential tests: Mei'08, Fellouris et al.'12, Yilmaz et al.'12
- Cooperative Spectrum Sensing and Censored detection: Akyildiz et al.'11
- Universal hypothesis tests: Levitan et al.'02, Jacob et al.'08, Unnikrishnan et al.'11
- Multihypothesis Sequential tests: Draglia et al.'99, Tartakovsky'00

General Problem: N = Stopping time, $\delta_N =$ decision rule

 $\min_{N,\delta_N} E[N|H_0] \text{ and } \min_{N,\delta_N} E[N|H_1],$

subject to $P_{F\!A} \leq \alpha_1$ and $P_{MD} \leq \alpha_2$

Parametric Distributed Sequential Tests

► At / th CR,

$$H_0: X_{k,l} \sim f_{0,l}$$

 $H_1: X_{k,l} \sim f_{1,l}$

- $f_{0,I}$ and $f_{1,I}$ are fully known
- $f_{0,l}$ and $f_{1,l}$ are not fully known: parametric family.

1. At Node, I, Sequential Probability Ratio Test (SPRT),

$$W_{k,l} = W_{k-1,l} + \log rac{f_{1,l}(X_{k,l})}{f_{0,l}(X_{k,l})}, \ W_{0,l} = 0.$$

1. At Node, I, Sequential Probability Ratio Test (SPRT),

$$W_{k,l} = W_{k-1,l} + \log rac{f_{1,l}(X_{k,l})}{f_{0,l}(X_{k,l})}, \ W_{0,l} = 0.$$

2. Node / transmits

$$Y_{k,l} = b_1 \mathbb{1}_{\{W_{k,l} \ge \gamma_1\}} + b_0 \mathbb{1}_{\{W_{k,l} \le -\gamma_0\}}$$

1. At Node, I, Sequential Probability Ratio Test (SPRT),

$$W_{k,l} = W_{k-1,l} + \log rac{f_{1,l}(X_{k,l})}{f_{0,l}(X_{k,l})}, \ W_{0,l} = 0.$$

2. Node / transmits

$$Y_{k,l} = b_1 \mathbb{1}_{\{W_{k,l} \ge \gamma_1\}} + b_0 \mathbb{1}_{\{W_{k,l} \le -\gamma_0\}}$$

Noisy MAC at the FC, Z_k i.i.d. MAC noise

$$Y_k = \sum_{l=1}^L Y_{k,l} + Z_k$$

1. At Node, I, Sequential Probability Ratio Test (SPRT),

$$W_{k,l} = W_{k-1,l} + \log \frac{f_{1,l}(X_{k,l})}{f_{0,l}(X_{k,l})}, \ W_{0,l} = 0.$$

2. Node / transmits

$$Y_{k,l} = b_1 \mathbb{1}_{\{W_{k,l} \ge \gamma_1\}} + b_0 \mathbb{1}_{\{W_{k,l} \le -\gamma_0\}}$$

Noisy MAC at the FC, Z_k i.i.d. MAC noise

$$Y_k = \sum_{l=1}^L Y_{k,l} + Z_k$$

3. FC runs SPRT: g_{μ} is p.d.f. of $\mu + Z_k$

1. At Node, I, Sequential Probability Ratio Test (SPRT),

$$W_{k,l} = W_{k-1,l} + \log \frac{f_{1,l}(X_{k,l})}{f_{0,l}(X_{k,l})}, \ W_{0,l} = 0.$$

2. Node / transmits

$$Y_{k,l} = b_1 \mathbf{1}_{\{W_{k,l} \ge \gamma_1\}} + b_0 \mathbf{1}_{\{W_{k,l} \le -\gamma_0\}}$$

Noisy MAC at the FC, Z_k i.i.d. MAC noise

$$Y_k = \sum_{l=1}^L Y_{k,l} + Z_k$$

3. FC runs SPRT: g_{μ} is p.d.f. of $\mu + Z_k$

$$F_k = F_{k-1} + \log \frac{g_{\mu_1}(Y_k)}{g_{-\mu_0}(Y_k)}, \ F_0 = 0,$$

1. At Node, I, Sequential Probability Ratio Test (SPRT),

$$W_{k,l} = W_{k-1,l} + \log \frac{f_{1,l}(X_{k,l})}{f_{0,l}(X_{k,l})}, \ W_{0,l} = 0.$$

2. Node / transmits

$$Y_{k,l} = b_1 \mathbf{1}_{\{W_{k,l} \ge \gamma_1\}} + b_0 \mathbf{1}_{\{W_{k,l} \le -\gamma_0\}}$$

Noisy MAC at the FC, Z_k i.i.d. MAC noise

$$Y_k = \sum_{l=1}^L Y_{k,l} + Z_k$$

3. FC runs SPRT: g_{μ} is p.d.f. of $\mu + Z_k$

$$F_k = F_{k-1} + \log rac{g_{\mu_1}(Y_k)}{g_{-\mu_0}(Y_k)}, \ F_0 = 0,$$

4. FC decides, at $N = \inf\{k : F_k \notin (-\beta_0, \beta_1)\}$, H_1 if $F_N \ge \beta_1$, H_0 if $F_N \ge -\beta_0$.

At each node I, time to cross the threshold

$$\mathcal{N}_I^1 \sim \mathcal{N}(rac{\gamma}{\delta_I}, rac{
ho_I^2 \gamma}{\delta_I^3}), \; \delta_I = \mathcal{E}_1[LLR_I] \; ext{and} \;
ho_I^2 = Var_1[LLR_I]$$

At each node I, time to cross the threshold

$$N_I^1 \sim \mathcal{N}(rac{\gamma}{\delta_I}, rac{
ho_I^2 \gamma}{\delta_I^3}), \ \delta_I = E_1[LLR_I] \ ext{and} \
ho_I^2 = Var_1[LLR_I]$$

$$t_j = j$$
th order statistics of $N_1^1, N_2^1, \ldots, N_L^1$

At each node I, time to cross the threshold

$$N_l^1 \sim \mathcal{N}(rac{\gamma}{\delta_l}, rac{
ho_l^2 \gamma}{\delta_l^3}), \ \delta_l = E_1[LLR_l] \ ext{and} \
ho_l^2 = Var_1[LLR_l]$$

 $t_j = j$ th order statistics of $N_1^1, N_2^1, \ldots, N_L^1$

•
$$I^* = min\{j : \delta^j_{FC} > 0 \text{ and } \frac{\beta - \overline{F}_j}{\delta^j_{FC}} < E[t_{j+1}] - E[t_j]\}$$

At each node I, time to cross the threshold

$$N_l^1 \sim \mathcal{N}(rac{\gamma}{\delta_l}, rac{
ho_l^2 \gamma}{\delta_l^3}), \ \delta_l = E_1[LLR_l] \ ext{and} \
ho_l^2 = Var_1[LLR_l]$$

 $t_j = j$ th order statistics of $N_1^1, N_2^1, \ldots, N_L^1$

►
$$I^* = \min\{j : \delta_{FC}^j > 0 \text{ and } \frac{\beta - \bar{F}_j}{\delta_{FC}^j} < E[t_{j+1}] - E[t_j]\}$$

► $\bar{F}_j = E[F_{t_j-1}], \ \bar{F}_j = \bar{F}_{j-1} + \delta_{FC}^j (E[t_j] - E[t_{j-1}]), \ \bar{F}_0 = 0.$
 $E_{DD} (E_1[N]) \approx E_1[N^1] \approx E[t_{I^*}] + \frac{\beta - \bar{F}_{I^*}}{\delta_{FC}^{I^*}}$

$$P_{MD} = P_1(N^0 < N^1) \ge P_1(N^0 < t_1, N^1 > t_1)$$

$$egin{aligned} P_{MD} &= P_1(N^0 < N^1) \geq P_1(N^0 < t_1, N^1 > t_1) \ &pprox P_1(N^0 < t_1) \end{aligned}$$

$$egin{aligned} & P_{MD} = P_1(N^0 < N^1) \geq P_1(N^0 < t_1, N^1 > t_1) \ & pprox P_1(N^0 < t_1) \ & ext{Also} \ P_1(N^0 < N^1) \leq P_1(N^0 < \infty) \end{aligned}$$

$$egin{aligned} & P_{MD} = P_1(N^0 < N^1) \geq P_1(N^0 < t_1, N^1 > t_1) \ &pprox P_1(N^0 < t_1) \ & ext{Also} \ P_1(N^0 < N^1) \leq P_1(N^0 < \infty) \ &= P_1(N^0 < t_1) + P_1(t_1 \leq N^0 < t_2) \ &+ P_1(t_2 \leq N^0 < t_3) + \dots \end{aligned}$$

Performance Analysis of DualSPRT- P_{MD}

$$egin{aligned} & P_{MD} = P_1(N^0 < N^1) \geq P_1(N^0 < t_1, N^1 > t_1) \ &pprox P_1(N^0 < t_1) \ & ext{Also} \ P_1(N^0 < N^1) \leq P_1(N^0 < \infty) \ &= P_1(N^0 < t_1) + P_1(t_1 \leq N^0 < t_2) \ &+ P_1(t_2 \leq N^0 < t_3) + \dots \end{aligned}$$

 $P_{MD} \approx P_1(N^0 < t_1)$

$$egin{aligned} & P_{MD} = P_1(N^0 < N^1) \geq P_1(N^0 < t_1, N^1 > t_1) \ &pprox P_1(N^0 < t_1) \ & ext{Also} \ P_1(N^0 < N^1) \leq P_1(N^0 < \infty) \ &= P_1(N^0 < t_1) + P_1(t_1 \leq N^0 < t_2) \ &+ P_1(t_2 \leq N^0 < t_3) + \dots \end{aligned}$$

$$P_{MD} \approx \frac{P_1(N^0 < t_1)}{P_{k=1}} = \sum_{k=1}^{\infty} P\Big[\{F_k < -\beta\} \cap_{n=1}^{k-1} \{F_n > -\theta\} | t_1 > k \Big] P[t_1 > k]$$

Comparison of Analysis with Simulations

- ► 5 Secondary nodes
- ▶ channel gains (0, -1.5, -2.5, -4 and -6 dB)

Comparison of Analysis with Simulations

- ► 5 Secondary nodes
- ▶ channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0, 1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l, 1), Var(Z_k) = 1$

Comparison of Analysis with Simulations

- ► 5 Secondary nodes
- ► channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0, 1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l, 1), Var(Z_k) = 1$

P _{MD} Sim.	P _{MD} Anal.	E _{DD} Sim.	E _{DD} Anal.
18.78 <i>e</i> – 4	19.85 <i>e</i> – 4	44.319	43.290
26.68 <i>e</i> - 4	27.51 <i>e</i> – 4	36.028	34.634
36.30 <i>e</i> - 4	35.16 <i>e</i> – 4	27.770	25.977

 $\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0}\{reject H_{0}\}] + (1 - \pi)[c E_{1}(N) + W_{1}P_{1}\{rejectH_{1}\}]$

$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

Theorem

►
$$\gamma_{0,l} = -r_l |\log c|$$
, $\gamma_{1,l} = \rho_l |\log c|$, $\beta_0 = -|\log c|$, $\beta_1 = |\log c|$.

$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

Theorem

►
$$\gamma_{0,l} = -r_l |\log c|$$
, $\gamma_{1,l} = \rho_l |\log c|$, $\beta_0 = -|\log c|$, $\beta_1 = |\log c|$

$$\lim_{c \to 0} \frac{E_0[N]}{|\log c|} \le \frac{1}{D_{tot}^0} + M_0 \text{ and } \lim_{c \to 0} \frac{E_1[N]}{|\log c|} \le \frac{1}{D_{tot}^1} + M_1$$
$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

Theorem

►
$$\gamma_{0,l} = -r_l |\log c|$$
, $\gamma_{1,l} = \rho_l |\log c|$, $\beta_0 = -|\log c|$, $\beta_1 = |\log c|$

$$\lim_{c \to 0} \frac{E_0[N]}{|\log c|} \le \frac{1}{D_{tot}^0} + M_0 \text{ and } \lim_{c \to 0} \frac{E_1[N]}{|\log c|} \le \frac{1}{D_{tot}^1} + M_1$$

- Gaussian MAC noise at FC
- μ chosen appropriately

$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

Theorem

►
$$\gamma_{0,l} = -r_l |\log c|$$
, $\gamma_{1,l} = \rho_l |\log c|$, $\beta_0 = -|\log c|$, $\beta_1 = |\log c|$

$$\lim_{c \to 0} \frac{E_0[N]}{|\log c|} \le \frac{1}{D_{tot}^0} + M_0 \text{ and } \lim_{c \to 0} \frac{E_1[N]}{|\log c|} \le \frac{1}{D_{tot}^1} + M_1$$

- Gaussian MAC noise at FC
- μ chosen appropriately

$$\lim_{c \to 0} \frac{P_{FA}}{c |\log c|} = 0 \text{ and } \lim_{c \to 0} \frac{P_{MD}}{c |\log c|} = 0$$

$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

Theorem

►
$$\gamma_{0,l} = -r_l |\log c|$$
, $\gamma_{1,l} = \rho_l |\log c|$, $\beta_0 = -|\log c|$, $\beta_1 = |\log c|$

$$\lim_{c \to 0} \frac{E_0[N]}{|\log c|} \le \frac{1}{D_{tot}^0} + M_0 \text{ and } \lim_{c \to 0} \frac{E_1[N]}{|\log c|} \le \frac{1}{D_{tot}^1} + M_1$$

Gaussian MAC noise at FC

• μ chosen appropriately

$$\lim_{c \to 0} \frac{P_{FA}}{c |\log c|} = 0 \text{ and } \lim_{c \to 0} \frac{P_{MD}}{c |\log c|} = 0$$
$$\lim_{c \to 0} \frac{\mathcal{R}_c(\delta^*_{Bayes})}{\mathcal{R}_c(\delta)} = 1$$

$$\mathcal{R}_{c}(\delta) = \pi [c E_{0}(N) + W_{0}P_{0} \{reject \ H_{0}\}] + (1 - \pi) [c E_{1}(N) + W_{1}P_{1} \{rejectH_{1}\}]$$
$$D_{tot}^{0} = \sum_{l=1}^{L} D(f_{0,l}||f_{1,l}), \ D_{tot}^{1} = \sum_{l=1}^{L} D(f_{1,l}||f_{0,l}), \ r_{l} = \frac{D(f_{0,l}||f_{1,l})}{D_{tot}^{0}}, \ \rho_{l} = \frac{D(f_{1,l}||f_{0,l})}{D_{tot}^{1}}$$

Theorem

►
$$\gamma_{0,l} = -r_l |\log c|$$
, $\gamma_{1,l} = \rho_l |\log c|$, $\beta_0 = -|\log c|$, $\beta_1 = |\log c|$

$$\lim_{c \to 0} \frac{E_0[N]}{|\log c|} \le \frac{1}{D_{tot}^0} + M_0 \text{ and } \lim_{c \to 0} \frac{E_1[N]}{|\log c|} \le \frac{1}{D_{tot}^1} + M_1$$

Gaussian MAC noise at FC

• μ chosen appropriately

$$\lim_{c \to 0} \frac{P_{FA}}{c |\log c|} = 0 \text{ and } \lim_{c \to 0} \frac{P_{MD}}{c |\log c|} = 0$$
$$\lim_{c \to 0} \frac{\mathcal{R}_c(\delta^*_{Bayes})}{\mathcal{R}_c(\delta)} = 1 \text{ and } \lim_{c \to 0} \frac{\mathcal{R}_c(\delta^*_{Cent.})}{\mathcal{R}_c(\delta)} = 1$$

 Using SPRT at Fusion center is not optimal since the optimality of SPRT is known for i.i.d. observations only.

- Using SPRT at Fusion center is not optimal since the optimality of SPRT is known for i.i.d. observations only.
- What is the best test at FC?

- Using SPRT at Fusion center is not optimal since the optimality of SPRT is known for i.i.d. observations only.
- What is the best test at FC?
- Sequential change detection formulation $\mu_k = E[Y_k]$

- Using SPRT at Fusion center is not optimal since the optimality of SPRT is known for i.i.d. observations only.
- What is the best test at FC?
- Sequential change detection formulation $\mu_k = E[Y_k]$

• Reducing the false alarms caused by FC MAC noise before t_1 .

$$F_{k}^{1} = \left(F_{k-1}^{1} + \log \frac{g_{\mu_{1}}(Y_{k})}{g_{z}(Y_{k})}\right)^{+}, F_{k}^{0} = \left(F_{k-1}^{0} + \log \frac{g_{z}(Y_{k})}{g_{-\mu_{0}}(Y_{k})}\right)^{-}$$

$$F_{k}^{1} = \left(F_{k-1}^{1} + \log \frac{g_{\mu_{1}}(Y_{k})}{g_{z}(Y_{k})}\right)^{+}, F_{k}^{0} = \left(F_{k-1}^{0} + \log \frac{g_{z}(Y_{k})}{g_{-\mu_{0}}(Y_{k})}\right)^{-}$$

► FC decides at $N = \inf\{k : F_k^1 \ge \beta_1 \text{ or } F_k^0 \le -\beta_0\},\$ $H_1 \text{ if } F_N^1 \ge \beta_1, H_0 \text{ if } F_N^0 \le -\beta_0$

$$F_{k}^{1} = \left(F_{k-1}^{1} + \log \frac{g_{\mu_{1}}(Y_{k})}{g_{z}(Y_{k})}\right)^{+}, F_{k}^{0} = \left(F_{k-1}^{0} + \log \frac{g_{z}(Y_{k})}{g_{-\mu_{0}}(Y_{k})}\right)^{-}$$

► FC decides at
$$N = \inf\{k : F_k^1 \ge \beta_1 \text{ or } F_k^0 \le -\beta_0\}$$
,
 $H_1 \text{ if } F_N^1 \ge \beta_1, H_0 \text{ if } F_N^0 \le -\beta_0$

$$\blacktriangleright \ \widehat{\mu}_k = E[Y_k], \ E_{\widehat{\mu}_k} \left[\log \frac{g_{\mu_1}(Y_k)}{g_Z(Y_k)} \right] = D(g_{\widehat{\mu}_k} || g_Z) - D(g_{\widehat{\mu}_k} || g_{\mu_1})$$

$$F_{k}^{1} = \left(F_{k-1}^{1} + \log \frac{g_{\mu_{1}}(Y_{k})}{g_{z}(Y_{k})}\right)^{+}, F_{k}^{0} = \left(F_{k-1}^{0} + \log \frac{g_{z}(Y_{k})}{g_{-\mu_{0}}(Y_{k})}\right)^{-}$$

► FC decides at
$$N = \inf\{k : F_k^1 \ge \beta_1 \text{ or } F_k^0 \le -\beta_0\}$$
,
 $H_1 \text{ if } F_N^1 \ge \beta_1, H_0 \text{ if } F_N^0 \le -\beta_0$

$$\widehat{\mu}_k = E[Y_k], \ E_{\widehat{\mu}_k} \left[\log \frac{g_{\mu_1}(Y_k)}{g_Z(Y_k)} \right] = D(g_{\widehat{\mu}_k} || g_Z) - D(g_{\widehat{\mu}_k} || g_{\mu_1})$$

Exp. drift of F_k^1 +ve if $D(g_{\widehat{\mu}_k} || g_Z) > D(g_{\widehat{\mu}_k} || g_{\mu_1}).$

$$F_k^1 = \left(F_{k-1}^1 + \log \frac{g_{\mu_1}(Y_k)}{g_z(Y_k)}\right)^+, \ F_k^0 = \left(F_{k-1}^0 + \log \frac{g_z(Y_k)}{g_{-\mu_0}(Y_k)}\right)^-$$

► FC decides at
$$N = \inf\{k : F_k^1 \ge \beta_1 \text{ or } F_k^0 \le -\beta_0\}$$
,
 $H_1 \text{ if } F_N^1 \ge \beta_1, H_0 \text{ if } F_N^0 \le -\beta_0$

►
$$\widehat{\mu}_k = E[Y_k], \ E_{\widehat{\mu}_k} \left[\log \frac{g_{\mu_1}(Y_k)}{g_Z(Y_k)} \right] = D(g_{\widehat{\mu}_k} || g_Z) - D(g_{\widehat{\mu}_k} || g_{\mu_1})$$

Exp. drift of F_k^1 +ve if $D(g_{\widehat{\mu}_k} || g_Z) > D(g_{\widehat{\mu}_k} || g_{\mu_1})$.
Exp. drift of F_k^0 -ve if $D(g_{\widehat{\mu}_k} || g_{-\mu_0}) < D(g_{\widehat{\mu}_k} || g_Z)$.

$$F_{k}^{1} = \left(F_{k-1}^{1} + \log \frac{g_{\mu_{1}}(Y_{k})}{g_{z}(Y_{k})}\right)^{+}, F_{k}^{0} = \left(F_{k-1}^{0} + \log \frac{g_{z}(Y_{k})}{g_{-\mu_{0}}(Y_{k})}\right)^{-}$$

- ► FC decides at $N = \inf\{k : F_k^1 \ge \beta_1 \text{ or } F_k^0 \le -\beta_0\}$, $H_1 \text{ if } F_N^1 \ge \beta_1, H_0 \text{ if } F_N^0 \le -\beta_0$
- ► $\widehat{\mu}_k = E[Y_k], \ E_{\widehat{\mu}_k} \left[\log \frac{g_{\mu_1}(Y_k)}{g_Z(Y_k)} \right] = D(g_{\widehat{\mu}_k} || g_Z) D(g_{\widehat{\mu}_k} || g_{\mu_1})$ Exp. drift of F_k^1 +ve if $D(g_{\widehat{\mu}_k} || g_Z) > D(g_{\widehat{\mu}_k} || g_{\mu_1})$. Exp. drift of F_k^0 -ve if $D(g_{\widehat{\mu}_k} || g_{-\mu_0}) < D(g_{\widehat{\mu}_k} || g_Z)$.
- Sample path argument

Modification of quantisation at SU's

- $P_{H_1}(MD) = P_{H_1}(MD < t_1) + P_{H_1}(t_1 \le MD \le t_2) + \dots$
- First term dominates.

- $P_{H_1}(MD) = P_{H_1}(MD < t_1) + P_{H_1}(t_1 \le MD \le t_2) + \dots$
- First term dominates.

$$P_{H_1}(\mathsf{FA before } t_1) = \sum_{k=1}^{\infty} P(\tau_{\beta} \le k | k < t_1) P(t_1 > k)$$

$$\tau_{\beta} \stackrel{\triangle}{=} \inf\{k \ge 1 : F_k^0 \le -\beta\}$$

- $P_{H_1}(MD) = P_{H_1}(MD < t_1) + P_{H_1}(t_1 \le MD \le t_2) + \dots$
- First term dominates.

| β-

$$P_{H_1}(\mathsf{FA before } t_1) = \sum_{k=1}^{\infty} P(\tau_{\beta} \le k | k < t_1) P(t_1 > k)$$

$$\tau_{\beta} \stackrel{\triangle}{=} \inf\{k \ge 1 : F_k^0 \le -\beta\}$$

$$\lim_{n \to \infty} P_0\{\tau_{\beta} > x | \tau_{\beta} < t_1\} = \exp(-\lambda_{\beta} x), x > 0$$

- $P_{H_1}(MD) = P_{H_1}(MD < t_1) + P_{H_1}(t_1 \le MD \le t_2) + \dots$
- First term dominates.

$$P_{H_1}(\mathsf{FA before } t_1) = \sum_{k=1}^{\infty} P(\tau_{\beta} \le k | k < t_1) P(t_1 > k)$$

$$\tau_{\beta} \stackrel{\triangle}{=} \inf\{k \ge 1 : F_k^0 \le -\beta\}$$

$$\lim_{\beta \to \infty} P_0\{\tau_{\beta} > x | \tau_{\beta} < t_1\} = \exp(-\lambda_{\beta} x), x > 0$$

$$P_{H_1}(\mathsf{FA before } t_1) \approx \sum_{k=1}^{\infty} (1 - e^{-\lambda_{\beta} k}) \prod_{l=1}^{L} (1 - \Phi_{\tau_{\gamma,l}}(k))$$

Comparison of Analysis with Simulations

- 5 Secondary nodes
- channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0, 1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l, 1), Var(Z_k) = 1$

P _{MD} Sim.	P _{MD} Anal.	E _{DD} Sim.	E _{DD} Anal.
0.00675	0.00613	26.8036	24.9853
0.0072	0.0065	33.1585	31.7624
0.01675	0.01624	30.0817	29.1322

Comparison with asymptotically optimal tests

Mei's SPRT: Mei, Trans. Inf. Theory 2008. DSPRT: Fellouris and Moustakides, Trans. Inf. Theory 2011.

SNR at local CR nodes Unknown

- SNR at local CR nodes Unknown
- Energy detector output is used as the observations to the local node SPRT's

- SNR at local CR nodes Unknown
- Energy detector output is used as the observations to the local node SPRT's
- Modelled as Gaussian mean change under low SNR's and large number of samples

- SNR at local CR nodes Unknown
- Energy detector output is used as the observations to the local node SPRT's
- Modelled as Gaussian mean change under low SNR's and large number of samples

► At SU /,

$$H_0: \theta = heta_0; \ H_1: \theta \geq heta_1$$
 .

where $\theta_0 = 0$ and θ_1 is appropriately chosen,

- SNR at local CR nodes Unknown
- Energy detector output is used as the observations to the local node SPRT's
- Modelled as Gaussian mean change under low SNR's and large number of samples

► At SU /,

$$H_0: \theta = heta_0$$
; $H_1: \theta \geq heta_1$.

where $\theta_0 = 0$ and θ_1 is appropriately chosen,

$$W_{n,l} = \max\left[\sum_{k=1}^n \log \frac{f_{\hat{\theta}_n}(X_k)}{f_{\theta_0}(X_k)}, \sum_{k=1}^n \log \frac{f_{\hat{\theta}_n}(X_k)}{f_{\theta_1}(X_k)}\right] ,$$

- SNR at local CR nodes Unknown
- Energy detector output is used as the observations to the local node SPRT's
- Modelled as Gaussian mean change under low SNR's and large number of samples

► At SU /,

$$H_0: \theta = heta_0$$
; $H_1: \theta \geq heta_1$.

where $\theta_0 = 0$ and θ_1 is appropriately chosen,

$$W_{n,l} = \max\left[\sum_{k=1}^{n}\log\frac{f_{\hat{\theta}_n}(X_k)}{f_{\theta_0}(X_k)}, \sum_{k=1}^{n}\log\frac{f_{\hat{\theta}_n}(X_k)}{f_{\theta_1}(X_k)}\right]$$

$$egin{array}{rcl} N&=&\inf\left\{n:W_{n,l}\geq g(cn)
ight\},\ g(t)&\approx&\log(1/t) ext{ as }t
ightarrow 0 \end{array}$$

▶ Decide upon H_0 or H_1 as $\hat{\theta}_N \leq \theta^*$ or $\hat{\theta}_N \geq \theta^*$ where θ^* solves $D(f_{\theta^*}||f_{\theta_0}) = D(f_{\theta^*}||f_{\theta_1})$

$$\blacktriangleright D(f_{\theta}||f_{\lambda}) = E_{\theta}[\log[f_{\theta}(X)/f_{\lambda}(X)]$$

- ► Decide upon H_0 or H_1 as $\hat{\theta}_N \leq \theta^*$ or $\hat{\theta}_N \geq \theta^*$ where θ^* solves $D(f_{\theta^*}||f_{\theta_0}) = D(f_{\theta^*}||f_{\theta_1})$
- $D(f_{\theta}||f_{\lambda}) = E_{\theta}[\log[f_{\theta}(X)/f_{\lambda}(X)]$
- Similar to GLR test in Neyman-Pearson approach in FSS tests
- Diminishing uncertainty of θ̂_n as an estimate of θ with n is incorporated into the varying stopping boundary g(cn)
- ▶ Asymptotically optimal over a broad range of θ as $c \rightarrow 0$

5 Secondary nodes

- ► 5 Secondary nodes
- ▶ channel gains (0, -1.5, -2.5, -4 and -6 dB)

- 5 Secondary nodes
- ▶ channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0, 1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l, 1), Var(Z_k) = 1$

- 5 Secondary nodes
- ► channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0, 1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l, 1), Var(Z_k) = 1$

hyp	E _{DD}	$P_{E} = 0.1$	$P_{E} = 0.05$	$P_{E} = 0.01$
H1	DualSPRT	2.06	3.177	5.264
H1	GLRSPRT	1.425	2.522	4.857
H0	DualSPRT	1.921	3.074	5.184
H0	GLRSPRT	2.745	3.852	6.115

► *N* is much less than the coherence time of the channel

N is much less than the coherence time of the channel
Fading gain is unknown to the CR nodes

- ► *N* is much less than the coherence time of the channel
- Fading gain is unknown to the CR nodes
- In case of Rayleigh fading, the received signal power, P₁ is exponentially distributed
- ► *N* is much less than the coherence time of the channel
- Fading gain is unknown to the CR nodes
- In case of Rayleigh fading, the received signal power, P₁ is exponentially distributed

$H_0: f_{0,l} \sim \mathcal{N}(0, \sigma^2); H_1: f_{1,l} \sim \mathcal{N}(\theta, \sigma^2)$

where θ is exponential distributed r.v which reflects the unknown channel gain.

Simulation results

► No. of nodes :5

•
$$\sigma^2 = 1, \theta = exp(1), Var(Z_k) = 1$$

Simulation results

No. of nodes :5

•
$$\sigma^2 = 1, \theta = exp(1), Var(Z_k) = 1$$

E _{DD}	$P_{FA} = 0.1$	$P_{FA} = 0.05$	$P_{F\!A} = 0.01$
DualSPRT	1.669	2.497	4.753
GLRSPRT	3.191	4.418	7.294

Table: slow-fading between primary and secondary user under H0

Simulation results

No. of nodes :5

•
$$\sigma^2 = 1, \theta = exp(1), Var(Z_k) = 1$$

E _{DD}	$P_{FA} = 0.1$	$P_{FA} = 0.05$	$P_{FA} = 0.01$
DualSPRT	1.669	2.497	4.753
GLRSPRT	3.191	4.418	7.294

Table: slow-fading between primary and secondary user under H0

E _{DD}	$P_{MD} = 0.1$	$P_{MD} = 0.08$	$P_{MD} = 0.06$
DualSPRT	1.74	1.854	2.417
GLRSPRT	1.62	3.065	5.42

Table: slow-fading between primary and secondary user under H1

Comparison between SPRT-CSPRT and GLR-CSPRT

- 5 Secondary nodes
- ▶ Unknown SNR: channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0,1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l,1), Var(Z_k) = 1$

Comparison between SPRT-CSPRT and GLR-CSPRT

- 5 Secondary nodes
- ▶ Unknown SNR: channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0,1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l,1), Var(Z_k) = 1$

Нур	E _{DD}	$P_{E} = 0.1$	$P_{E} = 0.05$	$P_{E} = 0.01$
H_1	SPRT-CSPRT	1.615	2.480	4.28
H_1	GLR-CSPRT	1.138	2.221	4.533
H_0	SPRT-CSPRT	1.533	2.334	4.225
H_0	GLR-CSPRT	2.424	3.734	5.72

Comparison between SPRT-CSPRT and GLR-CSPRT

- 5 Secondary nodes
- ▶ Unknown SNR: channel gains (0, -1.5, -2.5, -4 and -6 dB)
- $f_0 \sim \mathcal{N}(0,1)$ and $f_{1,l} \sim \mathcal{N}(\theta_l,1), Var(Z_k) = 1$

Нур	E _{DD}	$P_{E} = 0.1$	$P_{E} = 0.05$	$P_{E} = 0.01$
H_1	SPRT-CSPRT	1.615	2.480	4.28
H_1	GLR-CSPRT	1.138	2.221	4.533
H_0	SPRT-CSPRT	1.533	2.334	4.225
H_0	GLR-CSPRT	2.424	3.734	5.72

▶ Rayleigh Slow fading: $\sigma^2 = 1, \theta = exp(1), Var(Z_k) = 1$

Нур	E _{DD}	$P_{E} = 0.1$	$P_{E} = 0.07$	$P_{E} = 0.04$
H_1	SPRT-CSPRT	1.03	1.53	2.347
H_1	GLR-CSPRT	0.94	1.004	4.225
H_0	SPRT-CSPRT	1.528	1.741	2.415
H ₀	GLR-CSPRT	2.615	3.192	4.237

Universal Sequential Hypothesis Testing

Universal sequential hypothesis testing problem Model for Single Cognitive Radio

- Nonparametric or universal setup:
 - Noise statistics under no PU transmission is fully known
 - Transmit power, channel gains, modulation schemes etc. of PU transmissions is not available (SNR uncertainty).
- i.i.d. observations $X_i, i = 1, 2, \ldots$

$$H_0: X_i \sim P_0(\text{ p.d.f. } f_0) \text{ known }; H_1: X_i \sim P_1(\text{ p.d.f. } f_1) \text{ unknown}$$

$$N \stackrel{\Delta}{=} \inf\{n: W_n = \sum_{k=1}^n \log \frac{P_1(X_k)}{P_0(X_k)} \notin (-\gamma_0, \gamma_1)\},$$

$$N \stackrel{\Delta}{=} \inf\{n : W_n = \sum_{k=1}^n \log \frac{P_1(X_k)}{P_0(X_k)} \notin (-\gamma_0, \gamma_1)\},$$

$$\delta = H_1 \text{ if } W_N \ge \gamma_1; H_0 \text{ if } W_N \le -\gamma_0$$

$$N \stackrel{\Delta}{=} \inf\{n : W_n = \sum_{k=1}^n \log \frac{P_1(X_k)}{P_0(X_k)} \notin (-\gamma_0, \gamma_1)\},$$

$$\delta = H_1 \text{ if } W_N \ge \gamma_1; H_0 \text{ if } W_N \le -\gamma_0$$

• P_0 is known; P_1 is not known.

$$N \stackrel{\Delta}{=} \inf\{n : W_n = \sum_{k=1}^n \log \frac{P_1(X_k)}{P_0(X_k)} \notin (-\gamma_0, \gamma_1)\},\$$

$$\delta = H_1 \text{ if } W_N \ge \gamma_1; H_0 \text{ if } W_N \le -\gamma_0$$

▶ P_0 is known; P_1 is not known. Replace W_n by

$$\widehat{W}_n = -L_n(X_1^n) - \log P_0(X_1^n) - n\frac{\lambda}{2}, \, \lambda > 0.$$

 $L_n(X_1^n)$ =Codelength of a universal lossless source code for X_1^n

By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
(X) a.s. (H
(X) is the entropy rate).

- By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
 (X) a.s. (H
 (X) is the entropy rate).
- ► Consider universal codes which satisfy $\lim_{n\to\infty} n^{-1}L_n = \overline{H}(X)$ a.s. atleast for i.i.d. sources.

Discrete alphabet case Discussion of the test

- By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
 (X) a.s. (H
 (X) is the entropy rate).
- ► Consider universal codes which satisfy $\lim_{n\to\infty} n^{-1}L_n = \overline{H}(X)$ a.s. atleast for i.i.d. sources.
- ► Under *H*₁:

•
$$E_1[(-\log P_0(X_1^n))] = nH_1(X) + nD(P_1||P_0)$$

Discrete alphabet case Discussion of the test

- By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
 (X) a.s. (H
 (X) is the entropy rate).
- ► Consider universal codes which satisfy $\lim_{n\to\infty} n^{-1}L_n = \overline{H}(X)$ a.s. atleast for i.i.d. sources.
- ► Under *H*₁:
 - $E_1[(-\log P_0(X_1^n))] = nH_1(X) + nD(P_1||P_0)$
 - $L(X_1^n) \approx nH_1(X)$ for large n

Discrete alphabet case Discussion of the test

- By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
 (X) a.s. (H
 (X) is the entropy rate).
- ► Consider universal codes which satisfy $\lim_{n\to\infty} n^{-1}L_n = \overline{H}(X)$ a.s. atleast for i.i.d. sources.
- ► Under *H*₁:
 - $E_1[(-\log P_0(X_1^n))] = nH_1(X) + nD(P_1||P_0)$
 - $L(X_1^n) \approx nH_1(X)$ for large n
 - Thus average drift under H_1 : $D(P_1||P_0) \lambda/2$

Discrete alphabet case Discussion of the test

- By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
 (X) a.s. (H
 (X) is the entropy rate).
- ► Consider universal codes which satisfy $\lim_{n\to\infty} n^{-1}L_n = \overline{H}(X)$ a.s. atleast for i.i.d. sources.
- ► Under *H*₁:
 - $E_1[(-\log P_0(X_1^n))] = nH_1(X) + nD(P_1||P_0)$
 - $L(X_1^n) \approx nH_1(X)$ for large n
 - Thus average drift under H_1 : $D(P_1||P_0) \lambda/2$

Average drift under H_0 : $-\lambda/2$

Discrete alphabet case Discussion of the test

- By Shanon-Macmillan Thorem, for any stationary ergodic source lim_{n→∞} n⁻¹ log P(X₁ⁿ) = -H
 (X) a.s. (H
 (X) is the entropy rate).
- ► Consider universal codes which satisfy $\lim_{n\to\infty} n^{-1}L_n = \overline{H}(X)$ a.s. atleast for i.i.d. sources.
- ▶ Under *H*₁:
 - $E_1[(-\log P_0(X_1^n))] = nH_1(X) + nD(P_1||P_0)$
 - $L(X_1^n) \approx nH_1(X)$ for large n
 - Thus average drift under H_1 : $D(P_1||P_0) \lambda/2$

Average drift under H_0 : $-\lambda/2$ Thus consider P_1 belonging to the class

 $\mathcal{C} = \{P_1 : D(P_1, P_0) \geq \lambda\}.$

(1)
$$P_0(N < \infty) = 1$$
 and $P_1(N < \infty) = 1$.

(1)
$$P_0(N < \infty) = 1$$
 and $P_1(N < \infty) = 1$.

(2)
$$P_{FA} \stackrel{\Delta}{=} P_0(\widehat{W}_N \ge \gamma_1) \le \exp(-\gamma_1).$$

(1)
$$P_0(N < \infty) = 1$$
 and $P_1(N < \infty) = 1$.

(2)
$$P_{FA} \stackrel{\Delta}{=} P_0(\widehat{W}_N \ge \gamma_1) \le \exp(-\gamma_1).$$

(3) Under (A),
$$P_{MD} \stackrel{\Delta}{=} P_1(\widehat{W}_N \leq -\gamma_0) = \mathcal{O}(\exp(-\gamma_0 s)), \ s > 0...$$

(1)
$$P_0(N < \infty) = 1$$
 and $P_1(N < \infty) = 1$.
(2) $P_{FA} \stackrel{\Delta}{=} P_0(\widehat{W}_N \ge \gamma_1) \le \exp(-\gamma_1)$.
(3) Under (A), $P_{MD} \stackrel{\Delta}{=} P_1(\widehat{W}_N \le -\gamma_0) = \mathcal{O}(\exp(-\gamma_0 s)), \ s > 0$.
(4) $\frac{N}{|\log \gamma_0|} \xrightarrow{P_0 \text{ a.s.}}{\gamma_0, \gamma_1 \to \infty} \frac{2}{\lambda}; \ \frac{N}{|\log \gamma_1|} \xrightarrow{P_{1, \text{ a.s.}}}{\gamma_0, \gamma_1 \to \infty} \frac{1}{D(P_1||P_0) - \lambda/2}$

(1)
$$P_0(N < \infty) = 1$$
 and $P_1(N < \infty) = 1$.
(2) $P_{FA} \stackrel{\Delta}{=} P_0(\widehat{W}_N \ge \gamma_1) \le \exp(-\gamma_1)$.
(3) Under (A), $P_{MD} \stackrel{\Delta}{=} P_1(\widehat{W}_N \le -\gamma_0) = \mathcal{O}(\exp(-\gamma_0 s)), s > 0$..
(4) $\frac{N}{|\log \gamma_0|} \xrightarrow{P_0 \text{ a.s.}} \frac{2}{\lambda}; \frac{N}{|\log \gamma_1|} \xrightarrow{P_{1, a.s.}} \frac{1}{\mathcal{O}(\gamma_1 \to \infty)} \frac{1}{\mathcal{O}(P_1||P_0) - \lambda/2}$
(5) Under (A), if $E_1[(\log P_1(X_1))^{p+1}] < \infty \& E_1[(\log P_0(X_1))^{p+1}] < \infty$
for some $p \ge 1$, then for all $0 < q \le p$,
 $\frac{E_0[N^q]}{|\log \gamma_0|^q} \xrightarrow{\gamma_0, \gamma_1 \to \infty} \left(\frac{2}{\lambda}\right)^q, \quad \frac{E_1[N^q]}{|\log \gamma_1|^q} \xrightarrow{\gamma_0, \gamma_1 \to \infty} \left(\frac{1}{\mathcal{O}(P_1||P_0) - \frac{\lambda}{2}}\right)^q$

• Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$

► Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$ If $E[\log f_1(X_k)] < \infty$ then by SLLN

$$n^{-1}\sum_{k=1}^n \log f_1(X_k) \rightarrow -h(X_1)$$
 a.s.

▶ Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$ If $E[\log f_1(X_k)] < \infty$ then by SLLN

$$n^{-1}\sum_{k=1}^n \log f_1(X_k) \rightarrow -h(X_1)$$
 a.s.

• $X_k \to X_k^{\Delta} = [X_k/\Delta]\Delta;$

► Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$ If $E[\log f_1(X_k)] < \infty$ then by SLLN

$$n^{-1}\sum_{k=1}^n \log f_1(X_k) \rightarrow -h(X_1)$$
 a.s.

► Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$ If $E[\log f_1(X_k)] < \infty$ then by SLLN

$$n^{-1}\sum_{k=1}^n \log f_1(X_k) \rightarrow -h(X_1)$$
 a.s.

► Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$ If $E[\log f_1(X_k)] < \infty$ then by SLLN

$$n^{-1}\sum_{k=1}^n \log f_1(X_k) \rightarrow -h(X_1)$$
 a.s.

$$\blacktriangleright H(X_1^{\Delta}) + \log \Delta \rightarrow h(X_1) \text{ as } \Delta \rightarrow$$

Test is modified to

$$\widetilde{W}_n = -L_n(X_{1:n}^{\Delta}) - n\log\Delta - \sum_{k=1}^n \log f_0(X_k) - n\frac{\lambda}{2}$$

▶ Need to estimate $\sum_{k=1}^{n} \log f_1(X_k)$ If $E[\log f_1(X_k)] < \infty$ then by SLLN

$$n^{-1}\sum_{k=1}^n \log f_1(X_k) \rightarrow -h(X_1)$$
 a.s.

$$\widetilde{W}_n = -L_n(X_{1:n}^{\Delta}) - n\log\Delta - \sum_{k=1}^n \log f_0(X_k) - n\frac{\lambda}{2}$$

 $f_1 \in \mathcal{C} = \{f_1 : D(f_1, f_0) \geq \lambda\}.$

Continuous alphabet case Why Uniform Quantization?

 Uniform scalar quantization with optimal source coding is optimal at high rates.

- Uniform scalar quantization with optimal source coding is optimal at high rates.
- ► An adaptive uniform quantizer makes {X_n^Δ} non i.i.d. L_n unable to learn the underlying distribution in such scenario.
- Uniform scalar quantization with optimal source coding is optimal at high rates.
- ► An adaptive uniform quantizer makes {X^Δ_n} non i.i.d. L_n unable to learn the underlying distribution in such scenario.
- ▶ Non-uniform partitions with Δ_j in j^{th} bin and with p.m.f p_j require knowledge of p_j which is unknown under H_1 .

- Uniform scalar quantization with optimal source coding is optimal at high rates.
- ► An adaptive uniform quantizer makes {X^Δ_n} non i.i.d. L_n unable to learn the underlying distribution in such scenario.
- Non-uniform partitions with Δ_j in jth bin and with p.m.f p_j require knowledge of p_j which is unknown under H₁.

•
$$f_0(X_i)\Delta \approx p_0(X_i^{\Delta})$$
. $\widetilde{W}_n = -L_n(X_i^{\Delta}) - \sum_{j=1}^n \log p_0(X_i^{\Delta}) - n\lambda/2$.

- Uniform scalar quantization with optimal source coding is optimal at high rates.
- ► An adaptive uniform quantizer makes {X^Δ_n} non i.i.d. L_n unable to learn the underlying distribution in such scenario.
- ▶ Non-uniform partitions with Δ_j in j^{th} bin and with p.m.f p_j require knowledge of p_j which is unknown under H_1 .
- $f_0(X_i)\Delta \approx p_0(X_i^{\Delta})$. $\widetilde{W}_n = -L_n(X_i^{\Delta}) \sum_{j=1}^n \log p_0(X_i^{\Delta}) n\lambda/2$.
- Range of the quantization: f₁'s tail probabilities less than a small specific value at a fixed boundary

► Use Lempel-Ziv incremental parsing technique (LZ78).

- ► Use Lempel-Ziv incremental parsing technique (LZ78).
- Added a correction term $n\epsilon_n$ in \widetilde{W}_n

- Use Lempel-Ziv incremental parsing technique (LZ78).
- Added a correction term $n\epsilon_n$ in W_n

$$\epsilon_n = C\left(\frac{1}{\log n} + \frac{\log\log n}{n} + \frac{\log\log n}{\log n}\right)$$

C depends on size of the quantized alphabet.

- Use Lempel-Ziv incremental parsing technique (LZ78).
- Added a correction term $n\epsilon_n$ in W_n

$$\epsilon_n = C\left(\frac{1}{\log n} + \frac{\log\log n}{n} + \frac{\log\log n}{\log n}\right).$$

C depends on size of the quantized alphabet.

 LZSLRT performance is close to the nearly optimal parametric GLR sequential tests and is better for some class of distributions (e.g. Pareto)

L_n(X[∆]_{1:n}) from combined use of Krichevsky-Trofimov estimator and the Arithmetic Encoder

- ► L_n(X^Δ_{1:n}) from combined use of Krichevsky-Trofimov estimator and the Arithmetic Encoder
 - Estimate source distribution via K-T estimator for a finite alphabet source as,

$$P_{c}(x_{1}^{n}) = \prod_{t=1}^{n} \frac{v(x_{t}/x_{1}^{t-1}) + \frac{1}{2}}{t-1 + \frac{|A|}{2}},$$

- ► L_n(X^Δ_{1:n}) from combined use of Krichevsky-Trofimov estimator and the Arithmetic Encoder
 - Estimate source distribution via K-T estimator for a finite alphabet source as,

$$P_{c}(x_{1}^{n}) = \prod_{t=1}^{n} \frac{v(x_{t}/x_{1}^{t-1}) + \frac{1}{2}}{t-1 + \frac{|A|}{2}},$$

• Using AE with above estimate: $L_n(x_1^n) < -\log P_c(x_1^n) + 2$

- ► L_n(X^Δ_{1:n}) from combined use of Krichevsky-Trofimov estimator and the Arithmetic Encoder
 - Estimate source distribution via K-T estimator for a finite alphabet source as,

$$P_c(x_1^n) = \prod_{t=1}^n \frac{\nu(x_t/x_1^{t-1}) + \frac{1}{2}}{t - 1 + \frac{|A|}{2}},$$

• Using AE with above estimate: $L_n(x_1^n) < -\log P_c(x_1^n) + 2$

 Universal codes defined via the K-T estimator and AE are nearly optimal

Performance Comparison LZLRT

 $E_{DD} = 0.5 E_{H_1}[N] + 0.5 E_{H_0}[N]$ versus $P_E = 0.5 P_{FA} + 0.5 P_{MD}$

 $E_{DD} = 0.5 E_{H_1}[N] + 0.5 E_{H_0}[N]$ versus $P_E = 0.5 P_{FA} + 0.5 P_{MD}$

E _{DD}	$P_{E} = 0.05$	$P_{E} = 0.01$	$P_{E} = 0.005$
SPRT	3.21	4.59	6.29
GLR-Lai	5.0	8.53	12.83
LZSLRT	12.95	15.19	19.29

Table: $f_0 \sim \mathcal{N}(0,5)$ and $f_0 \sim \mathcal{N}(3,5)$

 $E_{DD} = 0.5 E_{H_1}[N] + 0.5 E_{H_0}[N]$ versus $P_E = 0.5 P_{FA} + 0.5 P_{MD}$

E _{DD}	$P_{E} = 0.05$	$P_{E} = 0.01$	$P_E = 0.005$
SPRT	3.21	4.59	6.29
GLR-Lai	5.0	8.53	12.83
LZSLRT	12.95	15.19	19.29

Table: $f_0 \sim \mathcal{N}(0,5)$ and $f_0 \sim \mathcal{N}(3,5)$

E _{DD}	$P_{E} = 0.05$	$P_{E} = 0.01$	$P_E = 0.005$
SPRT	7.45	10.86	18.23
GLR-Lai	18.21	29.65	33.42
LZSLRT	16.96	28.31	31.48

Table: $f_0 \sim \mathcal{P}(10, 2)$ and $f_0 \sim \mathcal{P}(3, 2)$

 $f_1 \sim \mathcal{N}(0,5)$ and $f_0 \sim \mathcal{N}(0,1)$, 8 bit uniform quantizer.

Performance Comparison Lognormal Distribution and Pareto Distribution examples

$$egin{aligned} & f_1 \sim \textit{In}\mathcal{N}(3,3) \text{ and} \ & f_0 \sim \textit{In}\mathcal{N}(0,3) \end{aligned}$$

 $egin{aligned} & f_1 \sim \textit{In}\mathcal{N}(3,3) \ \text{and} \ & f_0 \sim \textit{In}\mathcal{N}(0,3) \end{aligned}$

 $f_1 \sim \mathcal{P}(3,2)$ and $f_0 \sim \mathcal{P}(10,2)$, support set (2,10)

Performance Comparison Gaussian case ($f_1 \sim \mathcal{N}(0, 5)$ and $f_0 \sim \mathcal{N}(0, 1)$) with different estimators

Performance Comparison Gaussian case ($f_1 \sim \mathcal{N}(0, 5)$ and $f_0 \sim \mathcal{N}(0, 1)$) with different estimators

1-NN differential entropy estimator is, $\gamma =$ Euler-Mascheroni constant

$$\hat{h}_n = \frac{1}{n} \sum_{i=1}^n \log \rho(i) + \log(n-1) + \gamma + 1, \ \rho(i) \triangleq \min_{j:1 \le j \le n, j \ne i} ||X_i - X_j||$$

Performance Comparison Gaussian case ($f_1 \sim \mathcal{N}(0, 5)$ and $f_0 \sim \mathcal{N}(0, 1)$) with different estimators

1-NN differential entropy estimator is, $\gamma =$ Euler-Mascheroni constant

$$\hat{h}_n = \frac{1}{n} \sum_{i=1}^n \log \rho(i) + \log(n-1) + \gamma + 1, \ \rho(i) \triangleq \min_{j:1 \le j \le n, j \ne i} ||X_i - X_j||$$

Kernel density estimator at a point z is

$$\hat{f}_n(z) = rac{1}{w_n}\sum_{i=1}^n K\left(rac{z-X_i}{w_n}
ight)$$
, k: kernel and w_n : bandwidth

Performance Comparison Gaussian case ($f_1 \sim \mathcal{N}(0,5)$ and $f_0 \sim \mathcal{N}(0,1)$) with different estimators

1-NN differential entropy estimator is, $\gamma = \text{Euler-Mascheroni}$ constant

$$\hat{h}_n = \frac{1}{n} \sum_{i=1}^n \log \rho(i) + \log(n-1) + \gamma + 1, \ \rho(i) \triangleq \min_{j:1 \le j \le n, j \ne i} ||X_i - X_j||$$

Kernel density estimator at a point z is

Performance Comparison Comparison with Hoeffding Test: $P_0 \sim B(8, 0.2), P_1 \sim B(8, 0.5)$

 Hoeffding test: Asymptotically optimal universal fixed sample size test for finite alphabet sources

- Hoeffding test: Asymptotically optimal universal fixed sample size test for finite alphabet sources
- $\delta_{FSS} = \mathbb{I}\{D(\Gamma^n || P_0) \ge \eta\}$

- Hoeffding test: Asymptotically optimal universal fixed sample size test for finite alphabet sources
- $\delta_{FSS} = \mathbb{I}\{D(\Gamma^n || P_0) \ge \eta\}$

Sequential+Universal+Cooperative

- Sequential+Universal+Cooperative
- observations are i.i.d. at any CR and independent across CRs.

- Sequential+Universal+Cooperative
- observations are i.i.d. at any CR and independent across CRs.
- ► Algorithm: at SU's: , at FC:

- Sequential+Universal+Cooperative
- observations are i.i.d. at any CR and independent across CRs.
- ► Algorithm: at SU's: LZSLRT/KTSLRT, at FC: SPRT

- Sequential+Universal+Cooperative
- observations are i.i.d. at any CR and independent across CRs.
- Algorithm: at SU's: LZSLRT/KTSLRT, at FC: SPRT
- noisy MAC between SUs and FC
- ▶ FC SPRT: binary hypothesis testing of g_{μ_1} vs $g_{-\mu_0}$

Performance Comparison

$$b_1 = 1$$
, $b_0 = -1$, $I = 2$, $L = 5$ and $Z_k \sim \mathcal{N}(0, 1)$

Performance Comparison

$$b_1 = 1$$
, $b_0 = -1$, $l = 2$, $L = 5$ and $Z_k \sim \mathcal{N}(0, 1)$

 $f_{0,l} \sim \mathcal{N}(0,1)$ and $f_{1,l} \sim \mathcal{N}(0,5)$, for $1 \leq l \leq L$.

Performance Comparison

 $b_1 = 1, b_0 = -1, I = 2, L = 5 \text{ and } Z_k \sim \mathcal{N}(0, 1)$

 $f_{0,l} \sim \mathcal{N}(0,1)$ and $f_{1,l} \sim \mathcal{N}(0,5)$, for $1 \leq l \leq L$.

 $f_{0,l} \sim \mathcal{P}(10,2)$ and $f_{1,l} \sim \mathcal{P}(3,2)$, for $1 \leq l \leq L$.

Performance Comparison

 $b_1 = 1$, $b_0 = -1$, I = 2, L = 5 and $Z_k \sim \mathcal{N}(0, 1)$

Analysis using Perturbed Random Walk theory $\widehat{W}_n = S_n + \xi_n, \xi_n/n \to 0 \text{ a.s.}$

Multihypothesis Decentralized Sequential Testing (distributions completely known)

Multihypothesis Decentralized Sequential Testing: Algorithm-1 (DMSLRT-1)

• M Hypothesis (M > 2), $H_i : X_n \sim f^i$, $i = 0, \ldots, M - 1$
• M Hypothesis (M > 2), $H_i : X_n \sim f^i$, $i = 0, \ldots, M - 1$

$$E_{i}\left[\log\frac{f^{k}(X_{1})}{f^{j}(X_{1})}\right] =$$

• M Hypothesis
$$(M > 2)$$
, $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

• M Hypothesis (M > 2),
$$H_i : X_n \sim f^i$$
, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

$$\min_{j\neq k} E_i \left[\log \frac{f^k(X_1)}{f^j(X_1)} \right] =$$

• M Hypothesis
$$(M > 2)$$
, $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_{i}\left[\log\frac{f^{k}(X_{1})}{f^{j}(X_{1})}\right] = D(f^{i}||f^{j}) - D(f^{i}||f^{k})$$

$$\min_{j \neq k} E_{i} \left[\log \frac{f^{k}(X_{1})}{f^{j}(X_{1})} \right] = \begin{cases} < 0 & \text{when } k \neq i \end{cases}$$

• M Hypothesis
$$(M > 2)$$
, $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

$$\min_{j \neq k} E_{i} \left[\log \frac{f^{k}(X_{1})}{f^{j}(X_{1})} \right] = \begin{cases} < 0 & \text{when } k \neq i \\ > 0 & \text{when } k = i \end{cases}$$

• *M* Hypothesis (
$$M > 2$$
), $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

$$\min_{j \neq k} E_i \left[\log \frac{f^k(X_1)}{f^j(X_1)} \right] = \begin{cases} < 0 & \text{when } k \neq i \\ > 0 & \text{when } k = i \end{cases}$$

▶ At local node *I*, $\{W_{n,l}^{k,j}, 0 \le k, j \le M-1\}$

• *M* Hypothesis (
$$M > 2$$
), $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

$$\min_{j \neq k} E_{i} \left[\log \frac{f^{k}(X_{1})}{f^{j}(X_{1})} \right] = \begin{cases} < 0 & \text{when } k \neq i \\ > 0 & \text{when } k = i \end{cases}$$

▶ At local node *I*, $\{W_{n,l}^{k,j}, 0 \le k, j \le M-1\}$

$$W_{n,l}^{k,j} = W_{n-1,l}^{k,j} + \log \frac{f_l^k(X_{n,l})}{f_l^j(X_{n,l})}, W_{0,l}^{k,j} = 0$$

• *M* Hypothesis (
$$M > 2$$
), $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

$$\min_{j \neq k} E_i \left[\log \frac{f^k(X_1)}{f^j(X_1)} \right] = \begin{cases} < 0 & \text{when } k \neq i \\ > 0 & \text{when } k = i \end{cases}$$

▶ At local node *I*, $\{W_{n,l}^{k,j}, 0 \le k, j \le M-1\}$

$$\begin{split} W_{n,l}^{k,j} &= W_{n-1,l}^{k,j} + \log \frac{f_l^k(X_{n,l})}{f_l^j(X_{n,l})}, W_{0,l}^{k,j} = 0\\ N_l &= \inf\{n : W_{n,l}^{k,j} > A \text{ for all } j \neq k \text{ and some } k\} \end{split}$$

• *M* Hypothesis (
$$M > 2$$
), $H_i : X_n \sim f^i$, $i = 0, \dots, M - 1$

$$E_i\left[\log\frac{f^k(X_1)}{f^j(X_1)}\right] = D(f^i||f^j) - D(f^i||f^k)$$

$$\min_{j \neq k} E_i \left[\log \frac{f^k(X_1)}{f^j(X_1)} \right] = \begin{cases} < 0 & \text{when } k \neq i \\ > 0 & \text{when } k = i \end{cases}$$

▶ At local node *I*, $\{W_{n,l}^{k,j}, 0 \le k, j \le M-1\}$

$$W_{n,l}^{k,j} = W_{n-1,l}^{k,j} + \log \frac{f_l^k(X_{n,l})}{f_l^j(X_{n,l})}, W_{0,l}^{k,j} = 0$$

$$N_l = \inf\{n : W_{n,l}^{k,j} > A \text{ for all } j \neq k \text{ and some}$$

or $N_l = \inf\{n : \max_{k} \min_{j \neq k} W_{n,l}^{k,j} > A\}$

k

• Use reflected random walks at local nodes, $max(W_{n,l}, 0)$

- ► Use reflected random walks at local nodes, max(W_{n,l}, 0) Decision by node l = H_i
- At time $k \ge N_l$, node *l* transmits b_i

- ► Use reflected random walks at local nodes, max(W_{n,l}, 0) Decision by node l = H_i
- At time $k \ge N_l$, node *l* transmits b_i
- Instead of physical layer fusion, TDMA used.

- ► Use reflected random walks at local nodes, max(W_{n,l}, 0) Decision by node l = H_i
- At time $k \ge N_I$, node *I* transmits b_i
- Instead of physical layer fusion, TDMA used.

► FC uses the same test with hypotheses

$$G_m: Y_k \sim f_{FC}^m = \mathcal{N}(b_m, \sigma^2)$$

 $H_m: X_{k,l} \sim \mathcal{N}(m, 1), m=0, \dots, 4$, No of local nodes=5

Figure: Comparison among different Multihypothesis schemes

 Reduce false alarms caused by Gaussian noise before first transmission from local nodes.

- Reduce false alarms caused by Gaussian noise before first transmission from local nodes.
- FC statistic is modified as

$$F_n^{i,j} = \widehat{F}_n^{i,0} - \widehat{F}_n^{j,0}, \text{ where } \widehat{F}_n^{i,0} = \max\left(\widehat{F}_{n-1}^{i,0} + \log \frac{f_{FC}^i(Y_n)}{f_Z(Y_n)}, 0\right).$$

- Reduce false alarms caused by Gaussian noise before first transmission from local nodes.
- FC statistic is modified as

$$F_n^{i,j} = \widehat{F}_n^{i,0} - \widehat{F}_n^{j,0}, \text{ where } \widehat{F}_n^{i,0} = \max\left(\widehat{F}_{n-1}^{i,0} + \log\frac{f_{FC}^i(Y_n)}{f_Z(Y_n)}, 0\right).$$

• Expected drift of $\widehat{F}_n^{i,0} > 0$ only when $E[Y_n] > b_i/2$

- Reduce false alarms caused by Gaussian noise before first transmission from local nodes.
- FC statistic is modified as

$$F_n^{i,j} = \widehat{F}_n^{i,0} - \widehat{F}_n^{j,0}, \text{ where } \widehat{F}_n^{i,0} = \max\left(\widehat{F}_{n-1}^{i,0} + \log\frac{f_{FC}^i(Y_n)}{f_Z(Y_n)}, 0\right).$$

- Expected drift of $\hat{F}_n^{i,0} > 0$ only when $E[Y_n] > b_i/2$
- Positive b_i 's make $E[F_n^{i,j}]$ negligible before first transmission

Numerical results

SNRs (-10 dB, -6 dB, 0 dB and 6 dB), PU with SNR -10 dB uses the channel.

Figure: Comparison between MDSLRT-1 and MDSLRT-2

$$E_{DD}^{l} = E_{i}[N_{l}] \approx rac{A}{\min_{j \neq i} D(f_{l}^{i} || f_{l}^{j})}$$

E_{DD} Analysis at SU: Dominant event-Reflected random walk with minimum positive expected drift

$$E_{DD}^{l} = E_{i}[N_{l}] \approx rac{A}{\min_{j \neq i} D(f_{l}^{i}||f_{l}^{j})}$$

Nonlinear renewal theory to take care of overshoots

$$E_{DD}^{l} = E_{i}[N_{l}] \approx rac{A}{\min_{j \neq i} D(f_{l}^{i} || f_{l}^{j})}$$

- Nonlinear renewal theory to take care of overshoots
- ▶ P_{FA} Analysis at SU: Dominant event in {W^{k,j}_{n,l}, k ≠ i}-when the expected drift is most negative.

$$E_{DD}^{l} = E_{i}[N_{l}] \approx rac{A}{\min_{j \neq i} D(f_{l}^{i} || f_{l}^{j})}$$

- Nonlinear renewal theory to take care of overshoots
- ▶ P_{FA} Analysis at SU: Dominant event in {W^{k,j}_{n,l}, k ≠ i}-when the expected drift is most negative.

►
$$N_l^{k,j} = \inf\{n : W_{n,l}^{k,j} > A\}$$
; $P_{FA}^l \approx P(\min_{k \neq i} N_l^{k,i} < N_l^{i\hat{j}})$
 $\hat{j} = \operatorname{argmin}_{j \neq i} D(f_l^i || f_l^j)$

$$E_{DD}^{l} = E_{i}[N_{l}] \approx rac{A}{\min_{j \neq i} D(f_{l}^{i} || f_{l}^{j})}$$

- Nonlinear renewal theory to take care of overshoots
- ▶ P_{FA} Analysis at SU: Dominant event in {W^{k,j}_{n,l}, k ≠ i}-when the expected drift is most negative.
- ► $N_l^{k,j} = \inf\{n : W_{n,l}^{k,j} > A\}$; $P_{FA}^l \approx P(\min_{k \neq i} N_l^{k,i} < N_l^{i,\hat{j}})$ $\hat{j} = \operatorname{argmin}_{j \neq i} D(f_l^i || f_l^j)$
- E_{DD} Analysis of DMSLRT-1: $E_{DD} \approx E_i[\max_l N_l] + E_i[N_{FC}]$

Threshold (A)	E _{DD} SimIn.	E _{DD} Anal
100	157.54	141.61
120	186.98	169.34
140	216.31	197.07

Table: At SU: Comparison of E_{DD} obtained via simulation and analysis.

Threshold (A)	E _{DD} SimIn.	E _{DD} Anal	Threshold (A)	P'_{FA} SimIn.	P_{FA}^{l} Anal
100	157.54	141.61	8	0.0138	0.0296
120	186.98	169.34	10	0.0043	0.0093
140	216.31	197.07	20	5.00 <i>E</i> - 5	1.81E - 5

Table: At SU: Comparison of E_{DD} obtained via simulation and analysis.

Table: At SU: Comparison of P_{FA} obtained via simulation and analysis.

Threshold (A)	E _{DD} SimIn.	E _{DD} Anal	Threshold (A)	P'_{FA} Simln.	P_{FA}^{l} Anal
100	157.54	141.61	8	0.0138	0.0296
120	186.98	169.34	10	0.0043	0.0093
140	216.31	197.07	20	5.00 <i>E</i> - 5	1.81 <i>E</i> – 5

Table: At SU: Comparison of E_{DD} obtained via simulation and analysis.

Table: At SU: Comparison of P_{FA} obtained via simulation and analysis.

A	В	E _{DD} SimIn.	E _{DD} Anal
10	80	116.79	133.63
10	90	144.04	147.49
10	100	163.54	161.36

Table: DMSLRT-1: Comparison of E_{DD} obtained via simulation and analysis.

 Cooperating Spectrum Sensing algorithms in sequential detection framework

- Cooperating Spectrum Sensing algorithms in sequential detection framework
- First asymptotically optimal decentralized sequential hypothesis test for noisy MAC; Modified to perform well in non-asymptotic way; performance analysis, numerical comparisons

- Cooperating Spectrum Sensing algorithms in sequential detection framework
- First asymptotically optimal decentralized sequential hypothesis test for noisy MAC; Modified to perform well in non-asymptotic way; performance analysis, numerical comparisons
- Parameter uncertainty case.

- Cooperating Spectrum Sensing algorithms in sequential detection framework
- First asymptotically optimal decentralized sequential hypothesis test for noisy MAC; Modified to perform well in non-asymptotic way; performance analysis, numerical comparisons
- Parameter uncertainty case.
- Universal sequential spectrum sensing algorithms-unknown channel statistic scenario.

- Cooperating Spectrum Sensing algorithms in sequential detection framework
- First asymptotically optimal decentralized sequential hypothesis test for noisy MAC; Modified to perform well in non-asymptotic way; performance analysis, numerical comparisons
- Parameter uncertainty case.
- Universal sequential spectrum sensing algorithms-unknown channel statistic scenario.
- Universal sequential tests: discrete alphabet source

- Cooperating Spectrum Sensing algorithms in sequential detection framework
- First asymptotically optimal decentralized sequential hypothesis test for noisy MAC; Modified to perform well in non-asymptotic way; performance analysis, numerical comparisons
- Parameter uncertainty case.
- Universal sequential spectrum sensing algorithms-unknown channel statistic scenario.
- Universal sequential tests: discrete alphabet source (asymptotic properties derived), continuous alphabet source, decentralized scenario

- Cooperating Spectrum Sensing algorithms in sequential detection framework
- First asymptotically optimal decentralized sequential hypothesis test for noisy MAC; Modified to perform well in non-asymptotic way; performance analysis, numerical comparisons
- Parameter uncertainty case.
- Universal sequential spectrum sensing algorithms-unknown channel statistic scenario.
- Universal sequential tests: discrete alphabet source (asymptotic properties derived), continuous alphabet source, decentralized scenario
- Decentralized multihypothesis Sequential tests: performance analysis, numerical comparisons

Thank You
Publications based on this Thesis

- 1. J. K. Sreedharan and V. Sharma, "Spectrum sensing using distributed sequential detection via noisy MAC", submitted to journal.
- 2. J. K. Sreedharan and V. Sharma. "Nonparametric distributed sequential detection via universal source coding", in *Information Theory and Applications Workshop (ITA)*, California, USA, Feb 2013.
- J. K. Sreedharan and V. Sharma, "Spectrum Sensing via Universal Source Coding", in *Proc. IEEE Global Communications Conference* (GLOBECOM), California, USA, Dec 2012.
- 4. K. S. Jithin and V. Sharma, "Novel algorithms for distributed sequential hypothesis testing", in *Proc. 49th Annual Allerton Conference on Communication, Control and Computing*, Illinois, USA, Sep 2011 (invited paper).
- 5. J. K. Sreedharan and V. Sharma, "A novel algorithm for cooperative distributed sequential spectrum sensing in Cognitive Radio", in *Proc. IEEE Wireless Communications and Networking Conference (WCNC)*, Cancun, Mexico, Mar 2011.
- 6. K. S. Jithin, V. Sharma, and R. Gopalarathnam, "Cooperative distributed sequential spectrum sensing", in *Proc. IEEE National Conference on Communication (NCC)*, Bangalore, India, Jan 2011.

Lemmas to support DualSPRT analysis

Lemma 1

For i = 0, 1, $P_i(N_i = N_i^i) \rightarrow 1$ as $\gamma \rightarrow \infty$ and $P_i(N = N^i) \rightarrow 1$ as $\gamma \rightarrow \infty$ and $\beta \rightarrow \infty$.

Lemma 2

Under H_i , i = 0, 1 and $j \neq i$,

(a)
$$|N_l - N_l^j| \to 0$$
 a.s. as $\gamma \to \infty$ and $\lim_{\gamma \to \infty} \frac{N_l}{\gamma} = \lim_{\gamma \to \infty} \frac{N_l^j}{\gamma} = \frac{1}{D(f_{i,l}||f_{j,l})}$
a.s. and in L^1 .

(b)
$$|N - N^i| \to 0$$
 a.s. and $\lim \frac{N}{\beta} = \lim \frac{N'}{\beta}$ a.s. and in L^1 , as $\gamma \to \infty$ and $\beta \to \infty$.

Lemma 3

Let t_k be the time when k local nodes have made the decision. Under H_i , i = 0, 1, as $\gamma \to \infty$, P_i (Decision at time t_k is H_i and t_k is the k^{th} order statistics of $N_1^i, N_2^i, \ldots, N_L^i$) $\to 1$.

CR block diagram

Figure: Block diagram of the receiver implementation at a CR

 $P_{H_1}(FA before t_1)$

$$= \sum_{k=1}^{\infty} P\Big[\{F_{k} < -\theta\} \cap_{n=1}^{k-1} \{F_{n} > -\theta\} | t_{1} > k\Big] P[t_{1} > k]$$

$$= \sum_{k=1}^{\infty} \Big(P[F_{k} < -\theta| \cap_{n=1}^{k-1} \{F_{n} > -\theta\}] P[\cap_{n=1}^{k-1} \{F_{n} > -\theta\}] \Big)$$

$$P[t_{1} > k]$$

$$\stackrel{(A)}{=} \sum_{k=1}^{\infty} \Big(P[F_{k} < -\theta|F_{k-1} > -\theta] P[\inf_{1 \le n \le k-1} F_{n} > -\theta] \Big)$$

$$P[t_{1} > k]$$

$$\stackrel{(B)}{=} \sum_{k=1}^{\infty} \Big(\int_{c=0}^{2\theta} P[S_{k} < -c] f_{F_{k-1}} \{-\theta + c\} dc \Big)$$

$$\Big(1 - 2P[F_{k-1} < -\theta] \Big) \Big(\prod_{l=1}^{L} (1 - \Phi_{\tau_{\gamma,l}}(k)) \Big)$$

(A) is because of the Markov property of the random walk. (B) is due to the inequality, $P[\sup_{k \le n} F_k \ge \theta] \le 2P[F_n \ge \theta]$ for the Gaussian R.W

Gaussian Mean change approximation of Energy Detector

- ► X_{k,l} are a summation of energy of N samples received by the lth Cognitive Radio
- For large *N*, the pre and post change distributions of $X_{k,l}$ can be approximated by Gaussian distributions: $f_{0,l} \sim \mathcal{N}(\sigma^2, 2\sigma^4/N)$ and $f_{1,l} \sim \mathcal{N}(P_l + \sigma^2, 2(P_l + \sigma^2)^2/N)$ where P_l is the received power at the l^{th} CR node and noise $Z_{k,l} \sim \mathcal{N}(0, \sigma^2)$.
- Under low SNR conditions $(P_l + \sigma^2)^2 \approx \sigma^4$ and hence $X_{k,l}$ are Gaussian distributed with mean change under H_0 and H_1
- Take $X_{k,l} \sigma^2$ as the data for l^{th} node SPRT.

- $X_{k,l}$ is the received power in decibels.
- ▶ pre change distribution of X_{k,l} is N(μ₀, σ_l²) and post change distribution N(μ₀ + P_l, σ_l²)
- Secondary nodes are using Energy detector
- Under H₀ the uncertainty in noise and interference power is assumed to be log normally distributed. i.e log of the received power is Gaussian. μ₀ is mean noise power. σ₁² is the uncertainty in noise power.
- ▶ Under H_1 , P_l mean increase in received power due to the presence of primary. $P_l = 10 \log_{10}(1 + SNR)$ dB.
- Log normal distribution is valid under H₁ as its used for modelling shadowing.

Under mild conditions the limiting distribution of the excess of a random walk over a fixed threshold does not change by the addition of a slowly changing nonlinear term.

$$E_{i}[N_{l}] \approx \frac{A + \mathcal{X}_{l}^{i\hat{j}} + \mathcal{B}_{l}^{i\hat{j}}}{D(f_{l}^{i}||\hat{f}_{l}^{j})},$$

where
$$\mathcal{X}_{l}^{i\,\widehat{j}} = \frac{E_{i}[(R_{1,l}^{i,\widehat{j}})^{2}]}{2E_{i}[(R_{1,l}^{i,\widehat{j}})^{2}]} - \sum_{n=1}^{\infty} n^{-1}E_{i}S_{n,l}^{-i\,\widehat{j}}$$
 and $\mathcal{B}_{l}^{i\,\widehat{j}} = -\sum_{n=1}^{\infty} n^{-1}E_{i}S_{n,l}^{-i\,\widehat{j}}$
 $R_{k,l}^{i\,\widehat{j}} = \log(f_{l}^{i}(X_{k,l}/f_{l}^{\widehat{j}}(X_{k,l})) \text{ and } S_{n,l}^{-i\,\widehat{j}} = -\min(0, \sum_{k=1}^{n}R_{k,l}^{i\,\widehat{j}}).$

k=1