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» CR: Radio systems, which perform Radio Environment
Analysis, identify spectral holes and operate in those holes.

» Licensed (Primary) and Unlicensed (Secondary) users

» Spectral holes in various dimensions

Frequency

» Aided by evolving SDR technology
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> ldentify spectral holes and quickly detect the onset of primary
transmission

» Spectrum Sensing Hypothesis testing formulation:
Ho: Primary user transmission is absent
Hi: Primary user transmission is present
> Primary Techniques:
» Matched filter
» Cyclostationary detector
» Energy detector
» Challenges:

» Shadowing, Fading and low SNR
» Sensing Frequency and duration
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Cooperative setup

> Mitigates multipath fading, shadowing and hidden node

problem.

» Improves Probability of Errors (Pga and Ppp) and Expected

Detection Delay (Epp)

» A distributed statistical inference problem

dBm
PU Transmit Power

Loss due to Path
Loss

Loss due to
Multipath fading
and Shadowing

Sensitivity Level

Threshold with Cooperation

Improvement with
Cooperation

Noise Floor

Threshold without Cooperation
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» Focus on reducing the number of samples in the cooperative
setup with reliability constraints
(Decentralized Sequential Hypothesis Testing)
» Fast detection of idle TV bands
» Quickest detection of unoccupied spectrum in slotted primary
user transmission systems

v

Imprecise estimates of the channel gains and noise power
(parameter uncertainty-Composite Sequential Testing)

v

Channel gain statistic unknown (Universal Sequential Testing)

v

Detect the spectrum and identify the primary user
(Decentralized Multihypothesis Sequential Testing)
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Parametric Distributed Sequential Tests

» At [/t CR,

Ho: Xy~ fo,
Hy: Xy~ fiy

> fo,s and fy; are fully known

» fo,s and f; are not fully known: parametric family.
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1 (Xe,r)
fo.1(Xk.1)

Wk7/ = Wk_17/ + |Og s W07/ =0.

2. Node / transmits

Yi1 = bll{Wk,/Z"/l} + bol{Wk,/S—’)’o}
Noisy MAC at the FC, Zx i.i.d. MAC noise

L
Y=Y Yii+Z
=1

3. FC runs SPRT: g, is p.d.f. of u+ Zi

glh(yk)
Frk = Fk—1 +log =———=, Fo =0,
g—#o(yk)

4. FC decides, at N = mf{k i ¢ (—ﬁo,ﬁl)}, Hy if Fy > 81, Hy if
Fn = —fo.
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Performance Analysis of DualSPRT- Epp

Sample path argument

3 _ 1 3 — i 1
Jim Py(Ny=Nj) > 1, lim Ni/y = lim Ni/y

lim P(N=N')>1, lim N/y= lm N '
A Y=ol Rify=_ W S LLR Sum at local node [ under H,

Transmission from local node [

Mean of the received signal at FC
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» At each node /, time to cross the threshold

v Py
N} NN(E,’ 5’—3), 6y = E1[LLR)] and p? = Van[LLR)]
/

tj = jth order statistics of Ni, N3,..., N}

5

> [* = min{j: (5JFC >0 and

j+1] — Elg]}

F = E[Fy ), F=F 1+5 < (E[t;] = E[ti_1]), Fo = 0.

Epp (Ei[N]) ~ E1[N!] ~ E[t-] + 75*

SFc



Performance Analysis of DualSPRT- Pyp

Pup = P1(N° < N%) > Pi(NO < t, N > ;)



Performance Analysis of DualSPRT- Pyp

Pup = P1(N° < N%) > Pi(NO < t, N > ;)
~ P1(N° < t1)



Performance Analysis of DualSPRT- Pyp

Pup = P1(N° < N%) > Pi(NO < t, N > ;)
~ P1(N° < t1)
Also P (N° < N') < P(N° < o0)



Performance Analysis of DualSPRT- Pyp

Puyp = P1(N® < NY) > Pi(N° < 1, Nt > #)
~ P1(N? < t;)
Also P1(N° < N*) < Pi(N° < o)
=P (N° < t1) 4 Pi(t; < NO < )
+ Pty < NO < t3) + ...



Performance Analysis of DualSPRT- Pyp

Puyp = P1(N® < NY) > Pi(N° < 1, Nt > #)
~ P1(N? < t;)
Also P1(N° < N*) < Pi(N° < o)
=P (N° < t1) 4 Pi(t; < NO < )
+ Pty < NO < t3) + ...

Pl(NO < tl)

Q

Pvp



Performance Analysis of DualSPRT- Pyp

Puyp = P1(N® < NY) > Pi(N° < 1, Nt > #)
~ P1(N? < t;)
Also P1(N° < N*) < Pi(N° < o)
=P (N° < t1) 4 Pi(t; < NO < )
+ Pty < NO < t3) + ...

Pup =~ Pi(N°<t)

Y P[{F < -B) i {Fy > 6} > K] Pl >
k=1
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» 5 Secondary nodes
» channel gains (0, -1.5, -2.5, -4 and -6 dB)
» fo ~N(0,1) and f1; ~ N(0,1), Var(Zx) = 1

PppSim. PppAnal. EppSim. | EppAnal.
18.78e —4 | 19.85e — 4 | 44.319 | 43.290
26.68e —4 | 27.51e — 4 | 36.028 | 34.634
36.30e —4 | 35.16e — 4 | 27.770 | 25.977
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RC(5) = 7T[C Eo(N) + WoPo{reject Ho}] + (1 — 7T)[C El(/V) =4 W1P1{rejectH1}]

L L
D(fo /|| A D(f || f
D& = 3" D(folIfr). D = 3 D(Afor). rn = 2Bl PG
=1 =1 tot tot
> Yo, = —nl|logc| 1, = pillogcl|, Bo = —|logcl|, B1 = |logc|.
Eo[N 1 E{[N 1
jim oM o~ + Mo and lim 1M — + M
=0 | log C| Dy =0 | |ogc\ Dyo:
» Gaussian MAC noise at FC
> 1 chosen appropriately
Pea P
m A_—0and lim Mb
c—0 c|logc| c—0 c|logc|
Re(E 5%
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Using SPRT at Fusion center is not optimal since the
optimality of SPRT is known for i.i.d. observations only.

What is the best test at FC?

Sequential change detection formulation px = E[ Y]

B

Reducing the false alarms caused by FC MAC noise before t;.
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SPRT-CSPRT: (inspired from CUSUM) FC algorithm,

Yi)\ " g (Ye) \
Fi = <F1 + log &Y ) ,FD = (FO +log E2TK)
k k—1 g gz(yk) k k—1 gg_m(yk)

FC decides at N = inf{k : F} > B or FY < =},
Hy if FY > By, Ho if FY < —Bo

- 0 (V)

fix = E[Yid, Eg, [log %258 | = D(en, lgz) - Dlen.lgi.)
Exp. drift of F} +ve if D(gz,|lgz) > D(gu.||guw)-

Exp. drift of F -ve if D(gz,|lg—10) < D(ga,ll82)-
Sample path argument

0 i
Time (k)



Modification of quantisation at SU's
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> PHl(MD) = PHl(MD < tl) + PHl(tl < MD < t2) + ...

» First term dominates.

Pry(FA before 1) = ) P(75 < klk < t1)P(t > k)

o)
k=1

T3 inf{k >1:F? <-4}
Blim Po{ms > x|t < t1} = exp(—Agx),x >0
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Performance Analysis of SPRT-CSPRT: Pyp

> PHl(MD) = PHl(MD < tl) + PHl(tl < MD < t2) +...

» First term dominates.

WE

Pu, (FA before t1) = P(1s < klk < t1)P(t1 > k)

k=1
T3 2 inf{k >1: F) < —j}
lim Po{mg > x|m3 < t1} = exp(—Asx),x >0
B—ro0

°© L
Py, (FA before t1) =~ Z e~ Nak) H
k=1 =1



Comparison of Analysis with Simulations

» 5 Secondary nodes
» channel gains (0, -1.5, -2.5, -4 and -6 dB)
» fo ~N(0,1) and f1; ~ N(0,1), Var(Zx) = 1

PppSim. PypAnal. EppSim. EppAnal.
0.00675 | 0.00613 | 26.8036 | 24.9853
0.0072 | 0.0065 | 33.1585 | 31.7624
0.01675 | 0.01624 | 30.0817 | 29.1322




Comparison with asymptotically optimal tests

10
9l DualSPRT i
—— DSPRT
8 —— SPRT-CSPRT h
Mei’s SPRT
a iy i
a
Qo i

5r i
4+ i
’; Il Il Il Il Il I Il
0 0.5 1 1.5 2 25 3 35

Mei's SPRT: Mei, Trans. Inf. Theory 2008.
DSPRT: Fellouris and Moustakides, Trans. Inf. Theory 2011.



Different and unknown SNR's: GLR-SPRT

» SNR at local CR nodes Unknown



Different and unknown SNR's: GLR-SPRT

» SNR at local CR nodes Unknown

> Energy detector output is used as the observations to the
local node SPRT's



Different and unknown SNR's: GLR-SPRT

» SNR at local CR nodes Unknown

> Energy detector output is used as the observations to the
local node SPRT's

» Modelled as Gaussian mean change under low SNR’s and
large number of samples



Different and unknown SNR's: GLR-SPRT

» SNR at local CR nodes Unknown

> Energy detector output is used as the observations to the
local node SPRT's

» Modelled as Gaussian mean change under low SNR’s and
large number of samples

» At SU /,
Ho:0=0¢; H :0>01.

where 0y = 0 and 6 is appropriately chosen,



Different and unknown SNR's: GLR-SPRT

» SNR at local CR nodes Unknown

» Energy detector output is used as the observations to the
local node SPRT's

» Modelled as Gaussian mean change under low SNR’s and
large number of samples

» At SU /,
Ho:0=0¢; H :0>01.

where 0y = 0 and 6 is appropriately chosen,

" Xi) g, (Xe)
] = Max Iog log —* )
3w iy 2




Different and unknown SNR's: GLR-SPRT

» SNR at local CR nodes Unknown

» Energy detector output is used as the observations to the
local node SPRT's

» Modelled as Gaussian mean change under low SNR’s and
large number of samples

» At SU /,
Ho:0=0¢; H :0>01.

where 0y = 0 and 6 is appropriately chosen,

" Xi) g, (Xe)
] = Max Iog log —* )
3w iy 2

N = inf{n: W,; > g(cn)},
log(1/t) as t — 0

=
.
2



» Decide upon Hp or H; as 9,\/ < 0* or éN > 0* where 6* solves
D(fp+a,) = D(fo=||y,)

> D(fl[fx) = Epllog[fy(X)/fA(X)]




Decide upon Hp or H; as 9,\/ < 0* or éN > 0* where 6* solves
D(fp+a,) = D(fo=||y,)

D(#][£y) = Eo[log[fo(X)/Hn(X)]
Similar to GLR test in Neyman-Pearson approach in FSS tests

Diminishing uncertainty of 6, as an estimate of 6 with n is
incorporated into the varying stopping boundary g(cn)

Asymptotically optimal over a broad range of # as ¢ — 0
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Comparison between DualSPRT and GLRSPRT

» 5 Secondary nodes
» channel gains (0, -1.5, -2.5, -4 and -6 dB)
> f() ~ N(O, 1) and flJ ~ N((gl, 1), Var(Zk) =1

hyp Epp Pe=0.1 | Pc=0.05 | Pc=0.01
H1 || DualSPRT | 2.06 3.177 5.264
H1 || GLRSPRT | 1.425 2.522 4.857
HO || DualSPRT | 1.921 3.074 5.184
HO || GLRSPRT | 2.745 3.852 6.115
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Rayleigh Slow fading case

> N is much less than the coherence time of the channel
» Fading gain is unknown to the CR nodes

> In case of Rayleigh fading, the received signal power, P; is
exponentially distributed

HO . fo,/ NN(O,UZ); H1 . fl,l NN(Q,(IZ)

where 6 is exponential distributed r.v which reflects the
unknown channel gain.



Simulation results

» No. of nodes :5
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» No. of nodes :5
» 02 =1,0 = exp(l), Var(Zx) = 1

Epp Pea = 0.1 | Py =0.05 | Pgs = 0.01
DualSPRT 1.669 2.497 4,753
GLRSPRT 3.191 4.418 7.294

Table: slow-fading between primary and secondary user under HO



Simulation results

» No. of nodes :5
» 02 =1,0 = exp(l), Var(Zx) = 1

Epp Pea = 0.1 | Py =0.05 | Pgs = 0.01
DualSPRT 1.669 2.497 4,753
GLRSPRT 3.191 4.418 7.294

Table: slow-fading between primary and secondary user under HO

Epbp Pup =0.1 | Pyp =0.08 | Pyp = 0.06
DualSPRT 1.74 1.854 2.417
GLRSPRT 1.62 3.065 5.42

Table: slow-fading between primary and secondary user under H1
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» 5 Secondary nodes
» Unknown SNR: channel gains (0, -1.5, -2.5, -4 and -6 dB)
> fo ~ N(O, 1) and flJ ~ N(H,, 1), Var(Zk) =1

Hyp Epp Pg=0.1 | Pe=0.05 | Pc =0.01
H: || SPRT-CSPRT | 1.615 2.480 4.28
Hy GLR-CSPRT 1.138 2.221 4.533
Ho || SPRT-CSPRT | 1.533 2.334 4.225
Ho GLR-CSPRT 2.424 3.734 5.72




» 5 Secondary nodes

» Unknown SNR: channel gains (0, -1.5, -2.5, -4 and -6 dB)

Comparison between SPRT-CSPRT and GLR-CSPRT

> fo ~N(0,1) and £ ~ N (1), Var(Z) = 1

Hyp Epp Pg=0.1 | Pe=0.05 | Pc =0.01
H: || SPRT-CSPRT | 1.615 2.480 4.28
Hy GLR-CSPRT 1.138 2.221 4.533
Ho || SPRT-CSPRT | 1.533 2.334 4.225
Ho GLR-CSPRT 2.424 3.734 5.72

» Rayleigh Slow fading: 02 = 1,60 = exp(1), Var(Z) = 1

Hyp Epp Pe=0.1 | Pe =0.07 | Pe =0.04
H, | SPRT-CSPRT 1.03 1.53 2.347
H; GLR-CSPRT 0.94 1.004 4.225
Hy || SPRT-CSPRT | 1.528 1.741 2.415
Ho GLR-CSPRT 2.615 3.192 4.237




Universal Sequential Hypothesis Testing




Universal sequential hypothesis testing problem

Model for Single Cognitive Radio

» Nonparametric or universal setup:

> Noise statistics under no PU transmission is fully known
» Transmit power, channel gains, modulation schemes etc. of
PU transmissions is not available (SNR uncertainty).

> i.i.d. observations X;,i =1,2,...

> Hp: Xi ~ Po( p.d.f. ) known ;
Hy : X; ~ Py( p.d.f. 1) unknown
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Discrete alphabet for Py and P;

» SPRT: Py and Py fully known, for ~g,v1 > 0

N A inf{n: W, = Zlog ﬁ;gi:; ¢ (—v0,71)}s
k=1

0 = Hyif Wy >n1; Ho if Wy <=

» Py is known; P; is not known.



Discrete alphabet for Py and P;

» SPRT: Py and P; fully known, for 7,71 > 0

N A inf{n: W, = Zlog ﬁ;gi:; ¢ (—v0,71)}s
k=1

5 = H1 ifWNZ'Yl; HoifWNS—’yO

» Py is known; P; is not known. Replace W, by

—

A
Wy = —Lo(X{) ~ log Po(X{') = n7, A > 0.

L,(X])=Codelength of a universal lossless source code for X
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Discussion of the test
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entropy rate).
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Discrete alphabet case
Discussion of the test

» By Shanon-Macmillan Thorem, for any stationary ergodic
source lim,, oo ntlog P(X{) = —H(X) a.s. (H(X) is the
entropy rate).

» Consider universal codes which satisfy lim, ... n= 'L, = H(X)
a.s. atleast for i.i.d. sources.

» Under Hi:

> Ei[(—log Po(X("))] = nHi(X) + nD(Py[|Po)

» L(X{) = nHy(X) for large n

» Thus average drift under Hy: D(Py||Py) — A/2
Average drift under Hy: —)\/2
Thus consider P; belonging to the class

C — {Pl . D(Pl, Po) Z )\}
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Discrete alphabet case
Asymptotic Properties
(A): stronger version of pointwise universality

(1) Po(N <o0)=1and Pi(N < o0) =1.

(2) Pea = PO(WN > 1) < exp(—m1).

(3) Under (A), Pup 2 PL(Wy < —v0) = O(exp(—10s)), s > O..

(4) N Py a.s. 2 N Py, as. 1
[logyo| vom—o0” A" |logyi| vm—oo D(Pyi||Po) — A/2

(5) Under (A), if Ei[(log P1(X1))"™] < 0o & Eq[(log Po(X1))P*'] < o0
for some p > 1, then for all 0 < g < p,

Eo[N7] (2)" Ei[N9] 1 ’
[log y0l? v0m—ce \A/ 7 [logm|? rem—oc” \ D(P1]|Po) — 5

<
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Continuous alphabet for Py and P,

> Need to estimate ], log fi(Xx)
If Eflog fi(Xk)] < oo then by SLLN

n 1> log A(Xk) = —h(X1) as.
k=1

> Xk — XkA = [Xk/A]A;

Use Universal lossless coding on XlA./ XzA./ L XA
> H(X£) +log A — h(X1) as A — 0.
> Test is modified to

n
A
W, = —Ln(X{,) — nlog A — kz:l log fo(Xic) — n7

fieC={f:D(f,f) >\
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Continuous alphabet case

Why Uniform Quantization?

» Uniform scalar quantization with optimal source coding is
optimal at high rates.

» An adaptive uniform quantizer makes {X2} non i.i.d. L,
unable to learn the underlying distribution in such scenario.

» Non-uniform partitions with A; in jt bin and with p.m.f pj
require knowledge of p; which is unknown under Hj.

> H(X)A = po(XA). Wo = —La(XP) = S0, log po(X2) — n\/2.

» Range of the quantization: fi's tail probabilities less than a
small specific value at a fixed boundary
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LZSLRT algorithm

» Use Lempel-Ziv incremental parsing technique (LZ78).

» Added a correction term ne, in W,

1 loglogn loglogn
En:C< | loglogn  loglog >
log n n log n

C depends on size of the quantized alphabet.

» LZSLRT performance is close to the nearly optimal parametric
GLR sequential tests and is better for some class of
distributions (e.g. Pareto)
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KTSLRT algorithm

» L,(XA)) from combined use of Krichevsky-Trofimov estimator
and the Arithmetic Encoder

» Estimate source distribution via K-T estimator for a finite
alphabet source as,

Pe(x() = ﬁ ) + 5

|A]
o1 t—1+ =

» Using AE with above estimate: L,(x{") < — log Pc(x{") + 2

» Universal codes defined via the K-T estimator and AE are
nearly optimal
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Epp =0.5 EHl[N] + 0.5 EHO[N] versus Pe = 0.5 Pga + 0.5 Pyp

Epp Pe =0.05 | Pe =0.01 | Pe =0.005

SPRT 3.21 4.59 6.29
GLR-Lai 5.0 8.53 12.83
LZSLRT 12.95 15.19 19.29

Table: f5 ~ AN(0,5) and fo ~ N (3,5)




Performance Comparison LZLRT

Epp =0.5 EHl[N] + 0.5 EHO[N] versus Pg = 0.5 Pega + 0.5 Ppyp

Epp Pe =0.05 | Pe =0.01 | Pe =0.005

SPRT 3.21 4.59 6.29
GLR-Lai 5.0 8.53 12.83
LZSLRT 12.95 15.19 19.29

Table: f5 ~ AN(0,5) and fo ~ N (3,5)

Epp Pe=0.05 | Pe =0.01 | Pe =0.005

SPRT 7.45 10.86 18.23
GLR-Lai 18.21 29.65 33.42
LZSLRT 16.96 28.31 31.48

Table: fy ~P(10,2) and f ~ P(3,2)




Performance Comparison KTSLRT
Gaussian case

fi ~N(0,5) and fy ~ N(0,1), 8 bit uniform quantizer.

50 . .
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== KTSLRT S=0

4or = LZSLRT
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Performance Comparison
Lognormal Distribution and Pareto Distribution examples

fi ~ InN(3,3) and
fo ~ InN(0, 3)

oL -+ =KTSLRT S=1
\ ==LZSLRT
" 1
\
s
\




Performance Comparison
Lognormal Distribution and Pareto Distribution examples

fi ~ InN(3,3) and fi ~P(3,2) and fy ~ P(10,2),
fo ~ InN (0, 3) support set (2, 10)
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Performance Comparison

Gaussian case (i ~ N(0,5) and f ~ N (0, 1)) with different estimators

1-NN differential entropy estimator is, v = Euler-Mascheroni constant

N 1< A
h, = — lo N+log(n—1)+~4+1, p(i)= min Xi— X;
n; gp(i) +log(n—1)+~y+1 p(i) =  min || ql

Kernel density estimator at a point z is

. 1 — — X
fo(z) = — Z K (Z '> , k: kernel and w,: bandwidth
mi=1

Wn
80 : T
x ===KTSLRT S=1

705 =>—Test with Kernel Denisty Estr. fl

ook ‘= Test with INN Differential Entropy Estr/]

50 j i
2 %
2 b 4
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Comparison with Hoeffding Test: Py ~ B(8,0.2), P, ~ B(8,0.5)

> Hoeffding test: Asymptotically optimal universal fixed sample
size test for finite alphabet sources

> drss = I{D(I'"||Po) > n}

—— KT-estimator with AE
‘== Hoeffding test
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Decentralized case
Model and Algorithm

v

Sequential4-Universal4Cooperative

v

observations are i.i.d. at any CR and independent across CRs.
Algorithm: at SU’s: LZSLRT /KTSLRT, at FC: SPRT

noisy MAC between SUs and FC

FC SPRT: binary hypothesis testing of g, vs g_,,

v

v

v
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:
5 — DualSPRT

% - = -KTSLRT-SPRT $=1
S ‘= LZSLRT-SPRT

v

fo ~N(0,1) and £, ~ N(0,5), for

1< /<L

| * — DualSPRT
N . * - - -KTSLRT-SPRT S=1
8- s * ‘9= LZSLRT-SPRT
*
5
4
3
2
0 0.05 0.1 0.15 02 025 03 035 04 045
PE

fo, ~ P(10,2) and f; ~ P(3,2),
for1 </ <L



Decentralized case
Performance Comparison

b1:1, b():*].,I:2,L:53ndeNN(O,1)

‘ i i . i T T T T T
—— L * ——DualSPRT
S Du‘aISPI}T ] 9 * == =KTSLRT-SPRT S=1|
. == =KTSLRT-SPRT S=1 * s * ‘9= LZSLRT-SPRT
45 . ‘4= LZSLRT-SPRT f *
. * T
.
. or
*, )
.
s e
.~ i Al
~ % L i~
s .
0 0.05 0.1 015 P 02 025 03 0.35 Yo 0. ;»5 n‘\ 0. ‘|5 n‘z P 0. ‘25 n‘x 0. .‘15 0‘4 045
E

for ~N(0,1) and fi; ~ N(0,5), for £, ~ P(10,2) and £, ~ P(3,2),
1</<L. for1 < /<L

Analysis using Perturbed Random Walk theory
VAVn =S, +&n,&/n— 0 as.
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Multihypothesis Decentralized Sequential Testing:

Algorithm-1 (DMSLRT-1)

» M Hypothesis (M >2), H; : X, ~f/,i=0,...,M—1

k L .
E: Jlog i) | = D71 - D7 1)

. FR(X1) <0 when k#1i
min E,' |:|Og fJ(Xl):| - { >0 when k =/

> At local node /, {W 7,0 < k,j < M -1}

. . k(X .
Wi = Wk +log ’J.( /) W =0
3y b f} (Xny[) )
N, = inf{n: Wnk,J > A for all j # k and some k}
or N = inf{n: maxmin Wnk,”i > A}

k  j#k
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Algorithm-1 (DMSLRT-1) Contd.

v

Use reflected random walks at local nodes, max(W, ,0)
Decision by node | = H;

At time k > N,, node | transmits b;

Instead of physical layer fusion, TDMA used.

v

v

v

FC uses the same test with hypotheses
Gm : Yk ~ % = N(bm,0?)



Numerical results

Hm : Xicj ~ N(m, 1), m=0,..., 4, No of local nodes=>5

250 ; : ‘
—DMSLRT-1
== DualTest-D1
200 ", nin MSLRT-1:Test-D1]]|
3 N ===Test—D1:MSLRT-1

Figure: Comparison among different Multihypothesis schemes
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Algorithm-2 (DMSLRT-2)

v

Reduce false alarms caused by Gaussian noise before first
transmission from local nodes.

FC statistic is modified as

v

o . .y fi (Y,
Fii = FiO_FI0 where F/0 = max <Fn”°1 + log rc(Yn) ,0) :
f2(Y,)

Expected drift of Fi° > 0 only when E[Y,] > b;/2
Positive b;'s make E[F,“] negligible before first transmission

v

v



Numerical results

SNRs (-10 dB, -6 dB, 0 dB and 6 dB), PU with SNR -10 dB uses

the channel.
1800 T
—DMSLRT-2|
1600;l =-==DMSLRT-I{]
14()0;‘ -

1200

8 1000
=

800

600

400

200
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Comparison between MDSLRT-1 and MDSLRT-2
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Analysis of Algorithm-1(DMSLRT-1)

v

Epp Analysis at SU: Dominant event-Reflected random walk
with minimum positive expected drift
A

EL, = Ei[N)] ~ —
DD [NI] ming s D(FT 1)

v

Nonlinear renewal theory to take care of overshoots

Pra Analysis at SU: Dominant event in {Wfﬁ;j, k # i}-when
the expected drift is most negative.

NET = inf{n: W > A} 5 PLy & P(minge NS < N9

J = argmin;, (f/ 1)

» Epp Analysns of DMSLRT-1: Epp ~ E;[max; N|] + E;[Ngc]

v

v



Comparisons of Analysis with simulations

Threshold (A) | Epp SimIn. | Epp Anal
100 157.54 141.61
120 186.98 169.34
140 216.31 197.07

Table: At SU: Comparison of Epp
obtained via simulation and analysis.
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100 157.54 141.61 8 0.0138 0.0296
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Table: At SU: Comparison of Epp
obtained via simulation and analysis.

obtained via simulation and analysis.

A B EDD Simlin. EDD Anal
10 | 80 116.79 133.63
10 | 90 144.04 147.49
10 | 100 163.54 161.36

Table: DMSLRT-1: Comparison of Epp obtained via simulation and

analysis.
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Conclusions

» Cooperating Spectrum Sensing algorithms in sequential detection
framework

» First asymptotically optimal decentralized sequential hypothesis test
for noisy MAC; Modified to perform well in non-asymptotic way;
performance analysis, numerical comparisons

> Parameter uncertainty case.

> Universal sequential spectrum sensing algorithms-unknown channel
statistic scenario.

> Universal sequential tests: discrete alphabet source (asymptotic

properties derived), continuous alphabet source, decentralized
scenario

» Decentralized multihypothesis Sequential tests: performance
analysis, numerical comparisons



Thank You
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Lemmas to support DualSPRT analysis

Fori=0,1, Pi(N; = Nj) — 1 asy — oo and P{(N = N') — 1 as vy — oo and
B — 0.

<

Under H;, i = 0,1 and j # i,

N ; N N
(a) [Ny = Nj| —0as. asy — 0o and limy o0 7' = limy o0 (,/II 0

a.s. and in L .

(b) [N—N| = 0a.s. and Iim% = Iim%i a.s. and in L', as ¥y — co and 3
— 0.

v

Let tx be the time when k local nodes have made the decision. Under H;,

i=0,1, as 7 — o0,

P;(Decision at time tx is H; and t; is the k™ order statistics of NI, N5, ... Ni)
— 1.




CR block diagram

Frequency
CR Down Converter

Mixer

) ‘ ; e(t) &
Tunable H || Channel . § . Energy
R . . . 1 AGC . -
Notch Filter Selection Filter | : Calculator

Figure: Block diagram of the receiver implementation at a CR



P, (FA before t;)

— iP[{Fk < =0} N {(Fo > ~0}|t > k| Pl > K]
k=1

— i (P[Fk < 0| Nk 2L {F, > —0}] PINEZH{F, > —9}])
k=1
Plt; > K]
— ; (P[Fk < —6“ka1 > —9] P[lgriygfkfl F, > _9])
P[tl > k]
oo 26
(? Z (/ P[Sk < —c]fg,_{-0+ c}dc)
k=1 /=0
L

(1 —2P[Fi1 < 79]) (H(1 - ¢T%,(k))

=1

(A) is because of the Markov property of the random walk. (B) is due to
the inequality, P[sup,<, Fk > 0] < 2P[F, > 0] for the Gaussian R.W



Gaussian Mean change approximation of Energy Detector

» Xi, are a summation of energy of N samples received by the
[t Cognitive Radio

» For large N, the pre and post change distributions of Xj ; can
be approximated by Gaussian distributions:
fo ~N(02,20*/N) and fi; ~ N(P; + 0%, 2(P; + 02)?/N)
where P; is the received power at the /*" CR node and noise
Zky ~ N(0,02).

» Under low SNR conditions (P; + 0—2)2 ~ o* and hence Xk,1
are Gaussian distributed with mean change under Hy and H;

» Take Xy, — o2 as the data for /" node SPRT.



Gaussian Mean change under log normal modelling

> X1 is the received power in decibels.

» pre change distribution of Xy, is J\/(uo,al2) and post change
distribution A (o + Py, 0/?)

» Secondary nodes are using Energy detector

» Under Hp the uncertainty in noise and interference power is
assumed to be log normally distributed. i.e log of the received
power is Gaussian. fio is mean noise power. ¢;° is the
uncertainty in noise power.

» Under H;, P;- mean increase in received power due to the
presence of primary. P; = 10log;o(1 + SNR) dB.

» Log normal distribution is valid under H; as its used for
modelling shadowing.



Nonlinear renewal theory argument for MSLRT-1 analysis

Under mild conditions the limiting distribution of the excess of a
random walk over a fixed threshold does not change by the
addition of a slowly changing nonlinear term.

A+ X 4Bl
Ei[NI] ~ I—]l
D(#/1£)

g BIRO & ij_ -1 fu
where X ziﬁ—Zn ES andB = Zn ES
2E,[(R:tj/)2] n=1 n=1

Ry, = log(f (X, ,/f '(Xk) and S, ;'Y = —min(0, ZR”J
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