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Motivation

= Estimation and inference in Online
Social Network (OSN) o

= Example:
OSN users more likely to form edges
with those with similar attributes ? ?
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Motivation

= Estimation and inference in Online w
Social Network (OSN) low

= Example: lw
OSN users more likely to form edges
with those with similar attributes ? m Iw

Easy to answer if the graph is fully known beforehand
What if the network is not known?

= (Can only crawl network

= Few queries
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Problem definition
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Problem definition

Let G = (V, F)
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Problem definition

Let G = (V, F)
* Undirected graph
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Problem definition

Let G = (V, F)
* Undirected graph
= Node and edge have labels
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Problem definition

Let G = (V, F)
* Undirected graph

= Node and edge have labels

= Not necessarily connected or has included
connected components of interest
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Problem definition

Let G = (V, F)
* Undirected graph

= Node and edge have labels

= Not necessarily connected or has included
connected components of interest

= Few seed nodes

Seed nodes
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Problem definition

Let G = (V, F)
* Undirected graph

= Node and edge have labels

= Not necessarily connected or has included
connected components of interest

= Few seed nodes
= Large graph
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Problem definition (contd.)
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Problem definition (contd.)

Estimate u(G) = Z g(u,v)
(u,w)EE
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Problem definition (contd.)

Estimate u(G) = Z g(u,v)
(u,w)EE

* Graph is unknown
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Problem definition (contd.)

Estimate u(G) = Z g(u,v)
(u,w)EE

* Graph is unknown
* Only local information available

Seed nodes and their neighbor IDs
Query (visit) a neighbor
Visited nodes and their neighbor IDs
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Problem definition (contd.)

Estimate u(G) = Z g(u,v)

(u,w)EE
= Graph is unknown Seed nodes and their neighbor IDs
= Only local information available Query (visit) a neighbor

Visited nodes and their neighbor IDs

How do we know in real time if our estimates are accurate?
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Random walk based estimation
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Random walk based estimation
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Random walk based estimation
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Random walk based estimation
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Random walk based estimation

Random walk {X%}x>1 has unique stationary
distribution {; };-_, if graph G is connected and non-
bipartite

= (Goal:

Estimate u(G) = Z g(u,v)
(u,v)EE
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Random walk based estimation

Random walk {X%}x>1 has unique stationary

distribution {; };-_, if graph G is connected and non-
bipartite
= Goal:
Estimate (G Z g(u,v)
(u ’U)EE

= How [Ribeiro and Towsley ‘10]:

~1
2|E|
Esti € f Y : X“X?*
stimator for ( E)EEg(u V) - ;:1 g( 11)
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Random walk based estimation

Random walk {X%}x>1 has unique stationary

distribution {; };-_, if graph G is connected and non-
bipartite
= Goal:
Estimate u(G Z g(u,v)
(u ’U)EE

= How [Ribeiro and Towsley ‘10]:

—1
2|F
/ Estimator for Z g(u,v) : % Zg(Xi,XHl)

Asymptotically converges (u,v)eE i=1
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Random walk based estimation

Random walk {X%}x>1 has unique stationary

distribution {; };-_, if graph G is connected and non-
bipartite
= Goal:
Estimate (G Z g(u,v)
(u ’U)EE

= How [Ribeiro and Towsley ‘10]:

—1
2|
/ Estimator for Z g(u,v) : % Zg(Xi,XHl)

Asymptotically converges (u,v)eE i=1

Extensions: [Lee et al. '12], [Gjoka et al. 11] [Ribeiro etal. 12]
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We get an estimate of u(G) but how accurate is it ?
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Existing asymptotic techniques and issues
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Existing asymptotic techniques and issues

= Asymptotic convergence: Ergodic theorem

= Crawling the graph multiple times
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Existing asymptotic techniques and issues

= Asymptotic convergence: Ergodic theorem

= Crawling the graph multiple times
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Existing asymptotic techniques and issues

= Asymptotic convergence: Ergodic theorem
= Crawling the graph multiple times
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Existing asymptotic techniques and issues

= Asymptotic convergence: Ergodic theorem
= Crawling the graph multiple times
= Variety of convergence diagnostics for MCMCs
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= Asymptotic convergence: Ergodic theorem

= Crawling the graph multiple times
= Variety of convergence diagnostics for MCMCs
Roughly divided into:
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Existing asymptotic techniques and issues

= Asymptotic convergence: Ergodic theorem
= Crawling the graph multiple times
= Variety of convergence diagnostics for MCMCs
Roughly divided into:
= Multiple walks to check convergence
= Walks not independent (start at same seeds)
= No guarantees
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Existing asymptotic techniques and issues

= Asymptotic convergence: Ergodic theorem
= Crawling the graph multiple times
= Variety of convergence diagnostics for MCMCs
Roughly divided into:
= Multiple walks to check convergence
= Walks not independent (start at same seeds)
= No guarantees
= Break along walk into “nearly” independent segments
= Asymptotic & throws away most observations

@ : accepted sample @ :rejected sample
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Idea of tours

Properties of tours:
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Idea of tours

Properties of tours:
* Tours are independent
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Idea of tours

Properties of tours:
* Tours are independent
= Fully distributed crawler implementation
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Idea of tours

Properties of tours:
* Tours are independent
= Fully distributed crawler implementation
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Idea of tours
Properties of tours:
* Tours are independent
= Fully distributed crawler implementation

[ssues with tours:

= Returning to same node will take “forever” in
a large network [Massoulié etal'06] - IE|
vol(G) <

E[Tour length| = dogreo(g)
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Idea of tours
Properties of tours:
* Tours are independent
= Fully distributed crawler implementation

[ssues with tours:

= Returning to same node will take “forever” in
a large network [Massoulié etal'06] - IE|

e
1
E[Tour length| = vol(G)
degree(g)
= Solution? Renewal from the most frequent

node.

@® : most frequent node in sequence

A e e— A

- ’ Tour 1 Tour 3 RW node sequence
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Idea of tours
Properties of tours:
* Tours are independent
= Fully distributed crawler implementation

[ssues with tours:

= Returning to same node will take “forever” in
a large network [Massoulié etal'06] - IE|

e
1
E[Tour length| = vol(G)
degree(g)
= Solution? Renewal from the most frequent

node.

= No, tours will be interdependent
@® : most frequent node in sequence

XWWW ................ N

- ’ Tour 1 Tour 3 RW node sequence
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The idea of Super-node
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The idea of Super-node
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The idea of Super-node

G'=V",E) = Tackling disconnected graph

Jithin K. Sreedharan (jithin.sreedharan@inria.fr)



The idea of Super-node

G G' = (V,a E/) = Tackling disconnected graph

= Faster estimate with shorter

crawls
vol(G)

E[Tour length] = dogrec(Sy)
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The idea of Super-node

= Tackling disconnected graph

= Faster estimate with shorter

crawls
vol(G)

E[Tour length] = dogree(Sy)

= Not related to lumpability
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The idea of Super-node

= Tackling disconnected graph

= Faster estimate with shorter
crawls

E[Tour length] = vol(G)

degree(Sy)

= Not related to lumpability

Super-node formation:

= static and dynamic (will see later)
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Estimator
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Estimator

Key property of tours:
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Estimator
ds

f(w,v) :=g(u,v) Samples in kth tour Degree of super-node

except whenuorvis S,

Length of kth tour True value of the contracted graph
2
Key property of tours: Z t(k)l, X(k) )} —u(G")
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Estimator

Length of kth tour

/
Key property of tours: Z t(k)lj X(k) )}

fu,v) :==g(u,v) J Samples in kth tour

except whenuorvis S,

Estimate from crawls

m &k

t—17

)

True value of the contracted graph

,

Is. —u(G")
—

Degree of super-node
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Estimator

Length of kth tour True value of the contracted graph

o , S

Key property of tours: Z t(k)l, X(k) )} y —u(G")
s

: n\
fw,v) :=g(u,v) Samples in kth tour Degree of super-node

except whenu orvis S,

Given knowledge

Estimate from crawls from nodes in super-node
PN ) (8

N Sn k k

fi( - E E S(X, X)) +§ g(u,v)
k=1 t=2 (’LL,’U)EH
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Estimator
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Estimator

= Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])
Ela(G)] = n(G)
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Estimator

= Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])
Ela(G)] = n(G)

= Strongly consistent
1(G) — pu(G) a.s.
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Estimator

= Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])
Ela(G)] = n(G)

= Strongly consistent
1(G) — pu(G) a.s.

Confidence interval

P(lu(G) - (@) <) ~ 1~ 20 (Y7

Om Sampled variance
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Estimator

= Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])
Ela(G)] = n(G)

= Strongly consistent
1(G) — pu(G) a.s.

Confidence interval

P(lu(G) - (@) <) ~ 1~ 20 (Y7

Om Sampled variance

Er

0" := spectral gap of new graph
(k) (k) < 2 QVOI(G)
var Zf(Xt_l’Xt )| =B ( dz o' : max [(i,7) < B < o0
t=2 " (i:j)EE’
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Bayesian formulation

Find a posterior probability distribution

P(u(G) < x|{m tours})

with suitable prior distribution
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Bayesian formulation (contd.)
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Bayesian formulation (contd.)

hlvm] En ") (i)
> DXL D g(uw), o
k=((h—1)[v/m]+1) t=2 (u,v)€H
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Bayesian formulation (contd.)

" < k k A ~
Z Z f(Xt(—)la Xt( )) + ZQ(U, v), o°= Var(Fy)
k=((h—1)[vm]+1) t=2 (u,0)EH

Assumption: Fj, ~ Normal(u(G), 0?)
(also justifiable via exponentially bounded tour lengths [Aldous anf Fill '02])
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Bayesian formulation (contd.)

R d k k A A
Z Z f(Xt(—)p Xt( )) + ZQ(U,’U) , 0% = Var(Fy,)
k=((h—1)[vm|+1) t=2 (u,v)€H

Assumption: Fj, ~ Normal(u(G), 0?)
(also justifiable via exponentially bounded tour lengths [Aldous anf Fill ’02))

For m > 2 tours and assuming priors u(G)|o? ~ Normal(ug, 0?/mg),
Inverse-gamma (g /2, vgoé /2), then for large values of m,

P(u(G) < x[{m tours}) = dspudent-+ ()

(v,12,0)
v =uvy+ |Vm],

g + 30 (Fr — AG))?
. mo [ vm]((G))—po)
_ mopo + [VmA(G) T ot )

T T e+ Wm0 T o+ Wm))(mo + [Vm))
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Simulations on real-world networks
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Simulations on real-world networks

Dogster network: Online social network for dogs ?
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)
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6
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)
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True value
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6
Estimated value x10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

-6

5 x 10
1.5 |
g(u,v) = 1{u and v are different breed}
1 B —
True value
0.5 | |
v
Q
Q
O | | \ | \ | ' \ | \
0 1 2 3 4 5 6 7 8 9 10
6
Estimated value x10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

-6

5 x 10
1.5 |
g(u,v) = 1{u and v are different breed}
1 B —
True value
0.5 | |
e
SR
O | | \ | \ | '__. \ | \
0 1 2 3 4 5 6 7 8 9 10
6
Estimated value x10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

-6

5 x 10
1.5 |
g(u,v) = 1{u and v are different breed}
1 B —
True value
0.5 | |
SHRSEE
0 | ' | | —0 00— | |
0 1 2 3 4 5 6 7 8 9 10
6
Estimated value x10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

-6

5 x 10
1.5 N
g(u,v) = 1{u and v are different breed}
1 — —
True value

0.5 | N

gy

SIS
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0 1 2 3 4 5 6
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)
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[ ]f1(Different breed pals): Empirical posterior
1.5 -
1 - |
| True value

0.5 _ _ _
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)
6

5 x 10
1.5 =
1 - a
True value
0.5 =
v
2
Q
O | | | | | | ‘ | | |
0 1 2 3 4 5 6 7 8 9 10

6
Estimated value x 10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)
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— f1(Different breed pals): Approximate posterior
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True value
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W
Q
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

x 10 ©
2 | | | |
[ ] f1(Different breed pals): Empirical posterior
—— f1(Different breed pals): Approximate posterior
1.5 .
1 - _ |
True value
_ p _ _
05 |- A N . ]
A TN
Al I
/HH/T :§T
0 | | \ | \ |_| |
0 1 2 3 4 5 6 9 10
6
Estimated value x10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

) %10 ©
| | | | | |
1 [ 1/f1(Different breed pals): Empirical posterior
True value —— f1(Different breed pals): Approximate posterior
[ ]f2(Same breed pals): Empirical posterior
1.5 - _
1 B —
True value
_ ) _ _
05 - | / \\_ ]
_ / N
I AN
N
0 | | | giil 1 S~— |
0 1 2 3 4 5 6 7 8 9 10
6
Estimated value x10
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Simulations on real-world networks: Dogster network

415K nodes, 8.27M edges Percentage of graph covered: 2.72% (edges), 14.86% (nodes)

-6
x 10
2 H | | [ [
[ ]/f1(Different breed pals): Empirical posterior
True value —— f1(Different breed pals): Approximate posterior
[ 1f2(Same breed pals): Empirical posterior
m— f5(Same breed pals): Approximate posterior
1.5 —
1 [ |
True value
_ ) _ _
0.5 - / \\\_ i
/ N
M lilll
\\
0 r | | | H H S~—
0 1 2 3 4 5 6 7 8 9 10

6
Estimated value x 10
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Simulations on real-world networks: Friendster network

64K nodes, 1.25M edges
Percentage of graph covered: 7.43% (edges), 18.52% (nodes)
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x 10

Simulations on real-world networks: Friendster network

64K nodes, 1.25M edges

Percentage of graph covered: 7.43% (edges), 18.52% (nodes)

-10 For function f;

True value

NN

2

— Approximate posterior
[ |Empirical posterior .

a1 11 N

3l 4 5 §)
Estimated value

fi =dx,.dx,.,
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Simulations on real-world networks

64K nodes, 1.25M edges

Percentage of graph covered: 7.43% (edges), 18.52% (nodes)

%1010 For function fy
[ — [

True value

- NAN

_ 4|

g 1076 For function f5
I I I

— Approximate posterior -
[ |Empirical posterior N True value

A )

| s ilh

| AN

|2t / 1

: Friendster network

[ |
— Approximate posterior

[ |Empirical posterior

2 3 4 5 §)
Estimated value

fi =dx,.dx,.,

lllllllllll

7 8 9 06 0.8 1 1.2

Estimated value

1.4 1.6 1.8

1 if dXt +dXt+1 > 50
Jo =

0 otherwise
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Simulations on real-world networks: ADD Health data

A friendship network among high school students in USA

1545 nodes, 4003 edges
Percentage of graph covered: 10.87% (edges), 19.76% (nodes)

ﬁ'z"a’_ PURDUE Jithin K. Sreedharan (jithin.sreedharan@inria.fr)

llllllllllll

17



Simulations on real-world networks: ADD Health data

A friendship network among high school students in USA

1545 nodes, 4003 edges
Percentage of graph covered: 10.87% (edges), 19.76% (nodes)

x10™*
I
True value
4 - —
Same sex friendships:
Approximate posterior
Different sex friendships:
Approximate posterior
L L |
1.5 -1 -0.5 0 0.5 1 1.5

Estimated value
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Simulations on real-world networks: ADD Health data

A friendship network among high school students in USA

1545 nodes, 4003 edges
Percentage of graph covered: 10.87% (edges), 19.76% (nodes)

Jithin K. Sreedharan (jithin.sreedharan@inria.fr)

x10 ™4 %10
| T
Same race friendships:
True value 1 -  — . .
Approximate posterior
Different race friendships:
08 - Approximate posterior
4+ _
0.6 -
Same sex friendships:
Approximate posterior 04 - Truevalue
) 2 Truevalue (different race)
Different sex friendships: (samerace)
Approximate posterior 02
O | L | 0 L L | L L
-1.5 1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
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What if the super-node is not that “super”?
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses
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How to add nodes to super-node:
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses
How to add nodes to super-node:

= via any method as long as independent of already observed tours
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses
How to add nodes to super-node:
= via any method as long as independent of already observed tours

= Emulates retrospectively adding new node i into super-node S,, from the start
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses

How to add nodes to super-node:

= via any method as long as independent of already observed tours

= Emulates retrospectively adding new node i into super-node S,, from the start

» (Checks previous tours. Breaks them when i is found.

Tour 1 Tour 2 Tour 3 Tour 4

A A A FH
( \ | \
Original tour: w
\ @® : node (

samplel sample2 - samplek = S,
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses
How to add nodes to super-node:

= via any method as long as independent of already observed tours
= Emulates retrospectively adding new node i into super-node ,S,, from the start
» (Checks previous tours. Breaks them when i is found.

= Start k new tours from newly added node i;
k ~ negative Binomial distribution (function of degrees of i, .S,, and no of tours)

“Correction” tours from i:
Startati,endiniorS,
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses
How to add nodes to super-node:

= via any method as long as independent of already observed tours
= Emulates retrospectively adding new node i into super-node ,S,, from the start
» (Checks previous tours. Breaks them when i is found.

= Start k new tours from newly added node i;
k ~ negative Binomial distribution (function of degrees of i, .S,, and no of tours)

Theorem
Dynamic and static super-node sample paths are equivalent in distribution
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From metric u(G) does network look random ?
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Estimation and hypothesis testing in Chung-Lu or configuration model

&Z%—- PURDUE Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 20

UUUUUUUUUUU



Estimation and hypothesis testing in Chung-Lu or configuration model

Assumption: edges labels can be written as a function of node labels
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Estimation and hypothesis testing in Chung-Lu or configuration model

Assumption: edges labels can be written as a function of node labels

= Does the true value of the given graph u(G)= ) g(u,v) belongs to the class of
(u,v)EE
values when the edges are formed purely at randeom?
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Assumption: edges labels can be written as a function of node labels

= Does the true value of the given graph u(G)= ) g(u,v) belongs to the class of
(u,v)EE
values when the edges are formed purely at randeom?

p(G) ~ Distribution(E[u(Grandom)], Var|i(Grandom)])
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= Does the true value of the given graph u(G)= ) g(u,v) belongs to the class of
(u,v)EE
values when the edges are formed purely at randeom?

p(G) ~ Distribution(E[u(Grandom)], Var|i(Grandom)])

= Does the true value belongs to the class when the connections are formed

based on degrees alone with no other influence ?
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Estimation and hypothesis testing in Chung-Lu or configuration model

Assumption: edges labels can be written as a function of node labels

= Does the true value of the given graph u(G)= ) g(u,v) belongs to the class of
(u,v)EE
values when the edges are formed purely at randeom?

p(G) ~ Distribution(E[u(Grandom)], Var|i(Grandom)])

= Does the true value belongs to the class when the connections are formed
based on degrees alone with no other influence ?

Configuration model:

&Z%éa/- PURDUE Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 20

IIIIIIIIIIII



Estimation and hypothesis testing in Chung-Lu or configuration model

Assumption: edges labels can be written as a function of node labels

= Does the true value of the given graph u(G)= ) g(u,v) belongs to the class of
(u,v)EE
values when the edges are formed purely at randeom?

p(G) ~ Distribution(E[u(Grandom)], Var|i(Grandom)])

= Does the true value belongs to the class when the connections are formed
based on degrees alone with no other influence ?

Configuration model:

= Assume the degree sequence same as that of G.

&Z%éa/- PURDUE Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 20

IIIIIIIIIIII



Estimation and hypothesis testing in Chung-Lu or configuration model

Assumption: edges labels can be written as a function of node labels

= Does the true value of the given graph u(G)= ) g(u,v) belongs to the class of
(u,v)EE
values when the edges are formed purely at randeom?

p(G) ~ Distribution(E[u(Grandom)], Var|i(Grandom)])

= Does the true value belongs to the class when the connections are formed
based on degrees alone with no other influence ?

Configuration model:
= Assume the degree sequence same as that of G.

= Edges formed by uniformly selecting the half edges of each
node
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Estimation in Chung-Lu or configuration model
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Estimation in Chung-Lu or configuration model

Estimate E[u(Geont)] & Var[u(Geont)]

* The entire degree sequence unknown; only the
degrees of sampled nodes known
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Estimation in Chung-Lu or configuration model

Estimate E[u(Geont)] & Var[u(Geont)]

* The entire degree sequence unknown; only the
degrees of sampled nodes known

3 udy | 5~ (‘5)
(u,v)eEUES (u,v)eEUES
u#v U=V
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Estimation in Chung-Lu or configuration model

Estimate E[u(Geont)] & Var[u(Geont)]

* The entire degree sequence unknown; only the
degrees of sampled nodes known

dud, (3)
conf ZQU'U N +ZQ(U,U) 2?\4

(u,v)eEUES (u,v)eEUES
UFV U="v
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estimate g(u, v), for (u,v) ¢ E
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Estimation in Chung-Lu or configuration model

Random walk with jumps to

Estimate E[j1(Geons)] & Var[pu(Geont)) estimate g(u, v), for (u,v) & £
* The entire degree sequence unknown; only the . d
degrees of sampled nodes known Pr(head) :=p = d i
t «

wu

E conf ZQU’U —I—ZQUU (2)

(u,v)eEUES (u v)EEUES
UFV U="v
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Estimation in Chung-Lu or configuration model

Random walk with jumps to

Estimate E[1i(Geont)] & Var[u(Geont)] estimate g(u, v), for (u,v) ¢ E
= The entire degree sequence unknown; only the - )

degrees of sampled nodes known Pr(head) :=p = —

dt + «
d.d, W
Bl(Gron)] = 3 0(0) S04 3 g, L2,
(u,v)EEUE® (u,v)EEUE® with p, follow RW
UFV U=v

with 1 — p, uniform node sampling
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Hypothesis testing with the Chung-Lu model
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Hypothesis testing with the Chung-Lu model

Z g(u, U) ~ Normal (E[M(GC-L)] ; Var(GC-L)) (Lindeberg central limit theorem)
(uvv) EE1C—L
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Hypothesis testing with the Chung-Lu model

Z g(U, U) ~ Normal (E[M(GC-L)], VaT(GC_L)) (Lindeberg central limit theorem)

(U,’U)EEC_L
Look for the value of a the following satisfies
4(G) — E[u(Ger)]| < ay/Var(Ger)
Estimate value of given graph Mean and variance of Chung-Lu graph
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Hypothesis testing with the Chung-Lu model

Z g(u, U) ~ Normal (E[M(GC-L)] ; Var(GC-L)) (Lindeberg central limit theorem)
(uvv) EE1C—L

Look for the value of a the following satisfies

4(G) = E[u(Ger)]| < ay/Var(Gear)

T

Estimate value of given graph Mean and variance of Chung-Lu graph

Dogster network: Estimator for E[u(Gc.1,)]
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Hypothesis testing with the Chung-Lu model

Z g(u, U) ~ Normal (E[M(GC-L)] ; Var(GC-L)) (Lindeberg central limit theorem)
(uvv) EE1C—L

Look for the value of a the following satisfies

4(G) = E[u(Ger)]| < ay/Var(Gear)

T

Estimate value of given graph Mean and variance of Chung-Lu graph

Dogster network: Estimator for E[;(Gc.1)]
Percentage of graph crawled: 8.9% (edges), 18.51% (nodes)
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Hypothesis testing with the Chung-Lu model

Z g(U, U) ~ Normal (E[M(GC-L)] ] Var(GC_L )) (Lindeberg central limit theorem)

(U,’U)EEC_L
Look for the value of a the following satisfies
4(G) — E[u(Ger)]| < ay/Var(Ger)
Estimate value of given graph Mean and variance of Chung-Lu graph

Dogster network: Estimator for E[;(Gc.1)]
Percentage of graph crawled: 8.9% (edges), 18.51% (nodes)

Edge function True value Estimated value
1{same breed nodes} 8.12 x 10° 8.066 x 10°
1{different breed nodes} 2.17 x 10° 1.995 x 10°
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Conclusions
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Conclusions

= Unbiased estimator of u(G) = Z g(u,v)
(u,v)eEE
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Conclusions

= Unbiased estimator of u(G) = Z g(u,v)
= Propose dynamic super-node: “*)€”
v" Short parallel random walk crawls

v" Parameter-free crawling
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Conclusions

= Unbiased estimator of u(G) = Z g(u,v)
= Propose dynamic super-node: “*)€”
v" Short parallel random walk crawls
v" Parameter-free crawling

= Provides real-time assessment of estimation accuracy:

v" Bayesian formulation: posterior distribution, matches well true histogram

5 X 106 For function fs
- I
— — Approximate posterior
True value [ ]Empirical posterior
4

AN, _

| H
ol ] |
L 0.6 0.8 | 1.2 1.4 1.6 1.8
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Conclusions

= Unbiased estimator of u(G Z g(u,v)
= Propose dynamic super-node: \“*)€”
v" Short parallel random walk crawls
v" Parameter-free crawling
= Provides real-time assessment of estimation accuracy:
v" Bayesian formulation: posterior distribution, matches well true histogram
= If the given network forms connections randomly:

v" Estimation of expected value and variance of u(Gcont)

v" Check whether original network value samples from distribution of 1(Gecont)
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Thank you!

Software and paper available at http://bit.do/Jithin
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