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 Estimation and inference in Online 
Social Network (OSN)

 Example:
OSN users more likely to form edges 
with those with similar attributes ?

Motivation

Easy to answer if the graph is fully known beforehand
What if the network is not known?
 Can only crawl network
 Few queries
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Problem definition

 Undirected graph

 Node and edge have labels

 Not necessarily connected or has included 
connected components of interest

 Few seed nodes

Let

Seed nodes
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Problem definition

 Undirected graph

 Node and edge have labels

 Not necessarily connected or has included 
connected components of interest

 Few seed nodes

 Large graph

Let
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Problem definition (contd.)
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Problem definition (contd.)
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Problem definition (contd.)

Estimate

 Graph is unknown

 Only local information available

Seed nodes and their neighbor IDs

Query (visit) a neighbor 

Visited nodes and their neighbor IDs

How do we know in real time if our estimates are accurate?
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Random walk based estimation

Estimator for 

Random walk                    has unique stationary 
distribution                 if graph 𝐺 is connected and non-
bipartite

Estimate

 Goal:

 How [Ribeiro and Towsley `10]:

Asymptotically converges

Extensions: [Lee et al. `12], [Gjoka et al. `11] [Ribeiro et al. `12]
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We get an estimate of 𝜇 𝐺 but how accurate is it ?
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Existing asymptotic techniques and issues

 Asymptotic convergence: Ergodic theorem

 Crawling the graph multiple times

 Variety of convergence diagnostics for MCMCs

Roughly divided into:

 Multiple walks to check convergence

 Walks not independent (start at same seeds)

 No guarantees

 Break a long walk into “nearly” independent segments

 Asymptotic & throws away most observations

X1 X2
……. Xk

: accepted sample : rejected sample

Thrown away



8

Idea of tours



8

Idea of tours

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r



8

Idea of tours

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r



8

Idea of tours

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r



8

Idea of tours
Properties of tours:

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r



8

Idea of tours
Properties of tours:

 Tours are independent b
a

c

d

e

f

gi

h

k

l

mn

p
q

r



8

Idea of tours
Properties of tours:

 Tours are independent

 Fully distributed crawler implementation

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r



8

Idea of tours
Properties of tours:

 Tours are independent

 Fully distributed crawler implementation

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r

Issues with tours:



8

Idea of tours
Properties of tours:

 Tours are independent

 Fully distributed crawler implementation

b
a

c

d

e

f

gi

h

k

l

mn

p
q

r

Issues with tours:

 Returning to same node will take “forever” in 
a large network [Massoulié et al’06] 2|E|



8

Idea of tours
Properties of tours:

 Tours are independent

 Fully distributed crawler implementation
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Issues with tours:

 Returning to same node will take “forever” in 
a large network [Massoulié et al’06]

 Solution? Renewal from the most frequent 
node. 

2|E|

Tour 1 RW node sequence

: most frequent node in sequence

Tour 3
X1 X2
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Idea of tours
Properties of tours:

 Tours are independent

 Fully distributed crawler implementation

b
a

c

d

e

f
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h

k

l

mn

p
q

r

Issues with tours:

 Returning to same node will take “forever” in 
a large network [Massoulié et al’06]

 Solution? Renewal from the most frequent 
node. 

 No, tours will be interdependent

2|E|

Tour 1 RW node sequence

: most frequent node in sequence

Tour 3
X1 X2
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The idea of Super-node

 Tackling disconnected graph

 Faster estimate with shorter 
crawls

 Not related to lumpability

Super-node formation: 

 static and dynamic (will see later)
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Key property of tours:
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Estimator

Length of  𝑘th tour

Samples in 𝑘th tour Degree of super-node

True value of the contracted graph

Key property of tours:

𝑓 𝑢, 𝑣 ∶= 𝑔(𝑢, 𝑣)

except when 𝑢 or 𝑣 is 𝑆𝑛



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 10

Estimator

Length of  𝑘th tour

Samples in 𝑘th tour Degree of super-node

True value of the contracted graph

Key property of tours:

𝑓 𝑢, 𝑣 ∶= 𝑔(𝑢, 𝑣)

except when 𝑢 or 𝑣 is 𝑆𝑛



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 10

Estimator

Length of  𝑘th tour

Samples in 𝑘th tour Degree of super-node

True value of the contracted graph

Key property of tours:

𝑓 𝑢, 𝑣 ∶= 𝑔(𝑢, 𝑣)

except when 𝑢 or 𝑣 is 𝑆𝑛



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 11

Estimator



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 11

 Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])

Estimator



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 11

 Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])

 Strongly consistent

Estimator



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 11

 Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])

 Strongly consistent

Estimator

Confidence interval

Sampled variance



Jithin K. Sreedharan (jithin.sreedharan@inria.fr) 11

 Unbiased (unlike asymptotic in [Ribeiro and Towsley ‘10])

 Strongly consistent

Estimator

Confidence interval

Sampled variance
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Bayesian formulation

Find a posterior probability distribution

with suitable prior distribution
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Bayesian formulation (contd.)
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Bayesian formulation (contd.)
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Simulations on real-world networks

Dogster network: Online social network for dogs ?
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Simulations on real-world networks: Friendster network

64K nodes, 1.25M edges
Percentage of graph covered: 7.43% (edges), 18.52% (nodes)
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Simulations on real-world networks: Friendster network

64K nodes, 1.25M edges
Percentage of graph covered: 7.43% (edges), 18.52% (nodes)

Estimated value Estimated value
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Simulations on real-world networks: ADD Health data

1545 nodes, 4003 edges
Percentage of graph covered: 10.87% (edges), 19.76% (nodes)

A friendship network among high school students in USA
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What if the super-node is not that “super”?

How to add nodes to super-node: 

 via any method as long as independent of already observed tours

 Emulates retrospectively adding new node 𝑖 into super-node         from the start

 Checks previous tours. Breaks them when 𝑖 is found. 

Adaptive crawler: super-node gets bigger as crawling progresses

sample 1 sample 2 ……. sample 𝑘 = 𝑆𝑛

: node 𝑖

Original tour:

Tour 1 Tour 2 Tour 3 Tour 4
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“Correction” tours from 𝒊: 

Start at 𝑖, end in 𝑖 or 𝑆4

How to add nodes to super-node: 

 via any method as long as independent of already observed tours

 Emulates retrospectively adding new node 𝑖 into super-node         from the start

 Checks previous tours. Breaks them when 𝑖 is found. 

 Start 𝑘 new tours from newly added node 𝑖; 
k ~ negative Binomial distribution (function of degrees of 𝑖, and no of tours)
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What if the super-node is not that “super”?

Adaptive crawler: super-node gets bigger as crawling progresses

Theorem
Dynamic and static super-node sample paths are equivalent in distribution

How to add nodes to super-node: 

 via any method as long as independent of already observed tours

 Emulates retrospectively adding new node 𝑖 into super-node         from the start

 Checks previous tours. Breaks them when 𝑖 is found. 

 Start 𝑘 new tours from newly added node 𝑖; 
k ~ negative Binomial distribution (function of degrees of 𝑖, and no of tours)
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From metric 𝜇(𝐺) does network look random ?
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Estimation and hypothesis testing in Chung-Lu or configuration model

20

Assumption: edges labels can be written as a function of node labels

 Does the true value of the given graph                                    belongs to the class of 

values when the edges are formed purely at random?

 Does the true value belongs to the class when the connections are formed 

based on degrees alone with no other influence ? 

Configuration model:

 Assume the degree sequence same as that of G.

 Edges formed by uniformly selecting the half edges of each 
node
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Estimation in Chung-Lu or configuration model
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Hypothesis testing with the Chung-Lu model

(Lindeberg central limit theorem)

Look for the value of 𝑎 the following satisfies

Estimate value of given graph Mean and variance of Chung-Lu graph

Dogster network: Estimator for 

Edge function True value Estimated value

1{same breed nodes} 8.12 × 106 8.066 × 106

1{different breed nodes} 2.17 × 105 1.995 × 105

Percentage of graph crawled: 8.9% (edges), 18.51% (nodes)
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 Propose dynamic super-node: 

 Short parallel random walk crawls

 Parameter-free crawling

 Provides real-time assessment of estimation accuracy:

 Bayesian formulation: posterior distribution, matches well true histogram

 If the given network forms connections randomly:

 Estimation of expected value and variance of

 Check whether original network value samples from distribution of
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Thank you!
Software and paper available at http://bit.do/Jithin


