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The	Problem:	Fitting	a	model
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Pr(Gn|Gn0 ;✓)
<latexit sha1_base64="LVMK+LJd3d6TpbD+oGxOAySsrbY="></latexit>

Seed	graph

Parameters	of	
the	modelObserved	

graph

§ Data	usually	represents	a	single	snapshot																			of	the	graph	of	dynamic	
evolution	

§ Random	graph	models	tailored	to	specific	applications	provide	deep	insights	
unlike	general	learning	models	

§ Examples:	asymptotic	behavior,	clustering	properties,	properties	of	motifs	
(subgraphs	or	lower/higher	order	structures),	diffusion	over	the	graph	etc

Gobs := Gn
<latexit sha1_base64="7eApuPqXdRuPGbQdl7AQ3XIPL2w="></latexit>

Gn, Gn�1, . . . , Gn0
<latexit sha1_base64="TRYsWKR++kxX6ABi5j6Um9M+poM="></latexit>
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Why	need	to	revisit	the	estimation	methods?

§ Most of the existing parameter estimation techniques overlook the critical
property of graph symmetry (also known formally as graph automorphisms).

§ The estimated parameters give statistically insignificant results concerning the
observed network

Symmetries	of	the	graph	

§ Existing	methods	heavily	depend	upon	stead-state	assumption		and	asymptotic	
properties	of	the	graph	model

§ Many	of	these	assumptions	has	been	proven	not	to	exist	or	exist	with	strong	
conditions

Parameter	estimation	methods

Goal-1:	Take	into	account	the	number	of	automorphisms of	the	observed	
network	to	restrict	the	parameter	search	to	a	more	meaningful	range

Goal-2:	Use	exact	non-asymptotic	relations	
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Why	need	to	revisit	the	estimation	methods?

§ Direct	computation	of	likelihood	of	a	dynamic	graph	model	requires	𝑂(𝑛!)
computations

§ Clever	techniques	with	importance	sampling	or	expectation-maximization	still	
requires	huge	complexity

§ For	e.g.,	for	Duplication-Divergence	graph	model,	it	is																	with	a	large	hidden	
constant	factor	(𝑛:	no.	of	nodes,	𝜀:	required	resolution)

Maximum	likelihood	method

⇥(n3/"2)
<latexit sha1_base64="MnlT6rNU0gmimE6lxUxV0u+WI7M="></latexit>

Given	one	snapshot	of	
the	graph,	(𝑛 − 𝑛))!
ways	to	arrange	the	
order	of	arrival	of	nodes

§ Seed	graphs	play	an	important	role	in	biological	networks
§ Previous	solutions	form	seed	graphs	as	cliques

Seed	graph	choice

✓̂ = argmax
✓

Pr(Gn|Gn0 ;✓)
<latexit sha1_base64="OH1sFL0pghhrEXU+F7AOjw74nsU="></latexit>

=
X

Gn0+1,...,Gn�1,Gn2G(Gn0 ,Gn)

nY

k=n0+1

Pr(Gk|Gk�1;✓)

<latexit sha1_base64="deXSodo8uUm3QOuL4yXLfQ+KEXw="></latexit>

set	of	all	sequences	of	graphs	that	starts	with	𝐺*+ and	ends	at	𝐺*

Goal-3:	Achieve	Θ(𝑛) complexity

Goal-4:	Form	a	seed	graph	with	biological	relevance
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Duplication-Divergence	model	
(vertex-copying	model)

§ Duplication: Select a node 𝑢	from 𝐺/ uniformly at random. New 
node 𝑣	copies all connections of 𝑢.

§ Divergence: Each of the new made connections of 𝑣 are randomly 
deleted with probability 1 − 𝑝. For all other nodes, create a 
connection randomly with 𝑣 with probability 𝑟/𝑘

𝐺*+

hf

g

ec
id

ba

1

2
3

4
𝐺*

Start with seed graph 𝐺*). A time step 𝑘:
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Datasets	Used
Protein-protein	interaction	(PPI)	networks	of	7	species

A PREPRINT - JUNE 17, 2019

Notation Meaning

Gobs Observed real-world network
Gn0 Seed graph (initial graph) with n0 nodes
Gn Realization of the DD-model with fixed

parameters and n number of nodes
p, r Parameters of the DD-model
� Power law exponent
Aut(G) Automorphism group of graph G

|Aut(G)| Number of automorphisms of graph G

Ns(t) Set of neighbors of node t at time s

degs(t) Degree of a node t at time s

D(Gn) n
�1

Pn
i=1 degn(i)

D2(Gn) n
�1

Pn
i=1 deg2

n(i)
S2(Gn) Number of wedges (stars with two nodes) in Gn

C3(Gn) Number of triangles in Gn

Table 1: List of main notations

Original graph Gobs Seed graph Gn0

Organism Scientific name # Nodes # Edges log |Aut(G)| # Nodes # Edges

Baker’s yeast Saccharomyces cerevisiae 6,152 531,400 267 548 5,194
Human Homo sapiens 17,295 296,637 3026 546 2,822
Fruitfly Drosophila melanogaster 9,205 60,355 1026 416 1,210
Fission yeast Schizosaccharomyces pombe 4,177 58,084 675 412 226
Mouse-ear cress Arabidopsis thaliana Columbia 9,388 34,885 6696 613 41
Mouse Mus musculus 6,849 18,380 7827 305 7
Worm Caenorhabditis elegans 3,869 7,815 3348 185 15

Table 2: Statistics of PPI networks used in this paper and the generated seed graph Gn0 with nodes of the largest
phylogenetic ages.

only have physical and intra-species interactions. Unlike some of the previous studies that consider only the largest
connected component, the DD-model we focus in this work incorporates disconnected subgraphs and isolated nodes.

Table 2 shows the different PPI datasets considered in this paper. We have also listed the logarithm of the number
of automorphisms in the original graph, obtained using a publicly available program nauty [18]. We note here that
the PPI dataset is growing as new interactions getting added on every new release of the dataset. Many previous
studies were using older and less complete versions of the data, and therefore it is important to repeat the estimation
procedures from those studies and compare them to our methods.

2.1 Selection of seed graph Gn0

Previous studies typically assume the seed graph Gn0 as the maximal clique (or the largest two cliques) in the graph
Gn [5, 4]. Here we consider a novel formulation for the seed graph. We select the seed graph as the graph induced in
the PPI networks by the oldest proteins. That is, the proteins in the observed PPI data that are known to have the largest
phylogenetic age (taxon age). It is reasonable to expect that the same protein which appeared over different species
also appears in their common ancestor. Hence proteins shared across many different, distant species are supposed to
be older than others.

More precisely, the age of a protein is based on a family’s appearance on a species tree, and it is estimated via pro-
tein family databases and ancestral history reconstruction algorithms. We use Princeton Protein Orthology Database
(PPOD) [19] along with OrthoMCL [20] and PANTHER [21] for the protein family database and asymmetric Wagner
parsimony as the ancestral history reconstruction algorithm. These algorithms can be accessed via ProteinHistorian
software [22].

Table 2 also lists the statistics of seed graphs Gn0 for different PPI networks. Even if the original PPI network is
connected, the DD-model under consideration allows a disconnected graph to be the seed graph. Thus, similar to

4

Selection	of	seed	graph
§ As the graph induced in the PPI network by the oldest proteins, those with

the largest phylogenetic age (taxon age)
§ The	age	of	a	protein	is	based	on	its	family’s	appearance	on	a	species	tree,	

and	is	estimated	via	protein	family	databases	and	ancestral	history	
reconstruction	algorithms
Princeton	Protein	Orthology Database	(PPOD)	along	with	OrthoMCL and	PANTHER	for	the	
protein	family	database	and	asymmetric	Wagner	parsimony	as	the	ancestral	history	
reconstruction	algorithm

Data	collected	from	BioGRID.	Removed	self-interactions	(self-loops),	multiple	interactions	(multiple	
edges),	and	interspecies	(organisms)	interactions	of	proteins.

Jithin	K.	Sreedharan		BioKDD'19
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Influence	of	Parameters	on	Symmetries	of	the	Model

§ Neglected	in	most	of	the	prior	works
§ Real-world	PPI	networks	exhibit	large	number	of	symmetries
§ Erdős–Rényi and	preferential	attachment	models	are	asymmetric	with	

high	probability
§ Cross-checking	with	the	number	of	automorphisms of	the	real-world	

network	forms	a	null	hypothesis	test	for	the	model	under	
consideration

𝑏

𝑑 𝑒

𝑐

𝑎Symmetries	of	the	graph	(Graph	Automorphism):	
An	automorphism of	𝐺 is	adjacency	preserving	permutation	of	
vertices	of	𝐺 (i.e.,	a	form	of	symmetry)
The	collection	Aut(𝐺) of	automorphisms of	𝐺 is	called	
autmorphism group	of	𝐺
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generated from the DD-model. The seed graphE[log |Aut(Gn)|]
<latexit sha1_base64="0tn2xiMewQWDiS0+Ql17IFJamBE="></latexit>

Gn0 = K20
<latexit sha1_base64="aftuw0KzlQrNmRprvb8HlnckKZg="></latexit>

Influence	of	Parameters	on	Symmetries	of	the	Model

𝑛 = 100 𝑛 = 2000

For	large	ranges	of	𝑝 and	𝑟,	it	is	impossible	to	generate	graphs	with	large	number	of	
automorphisms

Statistical	test	for	significance	of	the	number	of	symmetries	with	the	
estimated	parameters

A PREPRINT - JUNE 17, 2019

the formation of the PPI network, we consider the graph induced by oldest proteins including isolated nodes and
disconnected subgraphs, not restricting ourselves to a connected component that introduces biases in the results.

3 Influence of parameters on symmetries of the model

(a) n = 100 (b) n = 500 (c) n = 2000

Figure 1: Logarithm of the expected number of automorphisms of graphs generated from the DD-model. The seed
graph Gn0 = K20.

For certain range of values of the parameters p and r of the DD-model, given n and Gn0 , we show in this section that
the model generates virtually only asymmetric graphs. However, we can put forward a question: are there any values
of parameters that will yield graphs with the number of automorphisms is close to the real-world PPIs?

In Figure 1, we present the average number of symmetries in the logarithmic scale for graphs with different sizes.
generated from the DD-model with a fixed set of parameters. As p, r ! 0 or when p becomes very close to 1 we
observe significantly larger values for the average number of automorphisms (since the generated graphs tend to have
numerous isolated nodes or they become closer to a complete graph). For instance in Figure 1a, p = 1, r = 0.4 has
E[log Aut(Gn)] = 1114, and p = 0, r = 0.4 has E[log Aut(Gn)] = 1253. But for large ranges of p and r, it is
practically impossible to generate a graph exhibiting any noticeable symmetries. For example, p = 0.2, r = 2.4 has
E[log Aut(Gn)] = 3.2; p = 0.6, r = 0 has E[log Aut(Gn)] = 1.3; and p = 0.4, r = 2.4 has E[log Aut(Gn)] = 0.12.
These observations are consistent for different n and Gn0 too, though the specific range of values of parameters will
obviously change.

The number of automorphisms in the DD-model behaves differently as compared to many other graph models includ-
ing preferential attachment and Er̋dos-Rényi models. The preferential-attachment graphs are asymmetric (no nontrivial
symmetries) with high probability when the number of edges a new node brings into the graph exceeds 2 [10], and
almost every graph from the Er̋dos-Rényi model is asymmetric [9]. On the other hand, the DD-model exhibits a large
number of symmetries and it grows with the number of nodes, as shown in Figure 1.

These findings allow us to argue that only certain subsets of (p, r) pairs correspond to the expected number of au-
tomorphisms in the order of the required value. This means that it can be reasonably used as a falsification tool to
discard certain parameter ranges and to verify parameter estimation methods. We provide a simple statistical test for
checking the possibility of generating the required number of symmetries with the estimated parameters.

Statistical test for significance of the number of symmetries with the estimated parameters. Given the real-world
network Gobs, seed graph Gn0 , and the estimated parameters (bp, br) of the DD-model, we can estimate the statistical
significance of the estimates with respect to the number of symmetries in Gobs as follows. Let G

(1)
n , . . . , G

(m)
n be m

graphs generated from DD-model(n, bp, br, Gn0). Then the p-value is now calculated as follows:

pu =
1

m

mX

i=1

1{log |Aut(G(i)
n )| � log |Aut(Gobs)|}

pl =
1

m

mX

i=1

1{log |Aut(G(i)
n )|  log |Aut(Gobs)|},

with 1{A} as the indicator function of the event A. Then p-value = 2 min{pu, pl}. As an example, for a fixed
parameter set, the empirical distribution of log |Aut(G)| is shown in Figure 2. The distribution is symmetrical and this
justifies use of the symmetrical definition of p-value. A lower p-value indicates that the estimated parameters do not
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the formation of the PPI network, we consider the graph induced by oldest proteins including isolated nodes and
disconnected subgraphs, not restricting ourselves to a connected component that introduces biases in the results.

3 Influence of parameters on symmetries of the model

(a) n = 100 (b) n = 500 (c) n = 2000

Figure 1: Logarithm of the expected number of automorphisms of graphs generated from the DD-model. The seed
graph Gn0 = K20.

For certain range of values of the parameters p and r of the DD-model, given n and Gn0 , we show in this section that
the model generates virtually only asymmetric graphs. However, we can put forward a question: are there any values
of parameters that will yield graphs with the number of automorphisms is close to the real-world PPIs?

In Figure 1, we present the average number of symmetries in the logarithmic scale for graphs with different sizes.
generated from the DD-model with a fixed set of parameters. As p, r ! 0 or when p becomes very close to 1 we
observe significantly larger values for the average number of automorphisms (since the generated graphs tend to have
numerous isolated nodes or they become closer to a complete graph). For instance in Figure 1a, p = 1, r = 0.4 has
E[log Aut(Gn)] = 1114, and p = 0, r = 0.4 has E[log Aut(Gn)] = 1253. But for large ranges of p and r, it is
practically impossible to generate a graph exhibiting any noticeable symmetries. For example, p = 0.2, r = 2.4 has
E[log Aut(Gn)] = 3.2; p = 0.6, r = 0 has E[log Aut(Gn)] = 1.3; and p = 0.4, r = 2.4 has E[log Aut(Gn)] = 0.12.
These observations are consistent for different n and Gn0 too, though the specific range of values of parameters will
obviously change.

The number of automorphisms in the DD-model behaves differently as compared to many other graph models includ-
ing preferential attachment and Er̋dos-Rényi models. The preferential-attachment graphs are asymmetric (no nontrivial
symmetries) with high probability when the number of edges a new node brings into the graph exceeds 2 [10], and
almost every graph from the Er̋dos-Rényi model is asymmetric [9]. On the other hand, the DD-model exhibits a large
number of symmetries and it grows with the number of nodes, as shown in Figure 1.

These findings allow us to argue that only certain subsets of (p, r) pairs correspond to the expected number of au-
tomorphisms in the order of the required value. This means that it can be reasonably used as a falsification tool to
discard certain parameter ranges and to verify parameter estimation methods. We provide a simple statistical test for
checking the possibility of generating the required number of symmetries with the estimated parameters.

Statistical test for significance of the number of symmetries with the estimated parameters. Given the real-world
network Gobs, seed graph Gn0 , and the estimated parameters (bp, br) of the DD-model, we can estimate the statistical
significance of the estimates with respect to the number of symmetries in Gobs as follows. Let G

(1)
n , . . . , G

(m)
n be m

graphs generated from DD-model(n, bp, br, Gn0). Then the p-value is now calculated as follows:

pu =
1

m

mX

i=1

1{log |Aut(G(i)
n )| � log |Aut(Gobs)|}

pl =
1

m

mX

i=1

1{log |Aut(G(i)
n )|  log |Aut(Gobs)|},

with 1{A} as the indicator function of the event A. Then p-value = 2 min{pu, pl}. As an example, for a fixed
parameter set, the empirical distribution of log |Aut(G)| is shown in Figure 2. The distribution is symmetrical and this
justifies use of the symmetrical definition of p-value. A lower p-value indicates that the estimated parameters do not
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Let																												be	𝑚 graphs	generated	from	the	 with	the	
estimated	parameters	using	any	fitting	method
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Figure 1: Logarithm of the expected number of automorphisms of graphs generated from the DD-model. The seed
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For certain range of values of the parameters p and r of the DD-model, given n and Gn0 , we show in this section that
the model generates virtually only asymmetric graphs. However, we can put forward a question: are there any values
of parameters that will yield graphs with the number of automorphisms is close to the real-world PPIs?

In Figure 1, we present the average number of symmetries in the logarithmic scale for graphs with different sizes.
generated from the DD-model with a fixed set of parameters. As p, r ! 0 or when p becomes very close to 1 we
observe significantly larger values for the average number of automorphisms (since the generated graphs tend to have
numerous isolated nodes or they become closer to a complete graph). For instance in Figure 1a, p = 1, r = 0.4 has
E[log Aut(Gn)] = 1114, and p = 0, r = 0.4 has E[log Aut(Gn)] = 1253. But for large ranges of p and r, it is
practically impossible to generate a graph exhibiting any noticeable symmetries. For example, p = 0.2, r = 2.4 has
E[log Aut(Gn)] = 3.2; p = 0.6, r = 0 has E[log Aut(Gn)] = 1.3; and p = 0.4, r = 2.4 has E[log Aut(Gn)] = 0.12.
These observations are consistent for different n and Gn0 too, though the specific range of values of parameters will
obviously change.

The number of automorphisms in the DD-model behaves differently as compared to many other graph models includ-
ing preferential attachment and Er̋dos-Rényi models. The preferential-attachment graphs are asymmetric (no nontrivial
symmetries) with high probability when the number of edges a new node brings into the graph exceeds 2 [10], and
almost every graph from the Er̋dos-Rényi model is asymmetric [9]. On the other hand, the DD-model exhibits a large
number of symmetries and it grows with the number of nodes, as shown in Figure 1.

These findings allow us to argue that only certain subsets of (p, r) pairs correspond to the expected number of au-
tomorphisms in the order of the required value. This means that it can be reasonably used as a falsification tool to
discard certain parameter ranges and to verify parameter estimation methods. We provide a simple statistical test for
checking the possibility of generating the required number of symmetries with the estimated parameters.

Statistical test for significance of the number of symmetries with the estimated parameters. Given the real-world
network Gobs, seed graph Gn0 , and the estimated parameters (bp, br) of the DD-model, we can estimate the statistical
significance of the estimates with respect to the number of symmetries in Gobs as follows. Let G

(1)
n , . . . , G

(m)
n be m

graphs generated from DD-model(n, bp, br, Gn0). Then the p-value is now calculated as follows:

pu =
1

m

mX

i=1

1{log |Aut(G(i)
n )| � log |Aut(Gobs)|}

pl =
1

m

mX

i=1

1{log |Aut(G(i)
n )|  log |Aut(Gobs)|},

with 1{A} as the indicator function of the event A. Then p-value = 2 min{pu, pl}. As an example, for a fixed
parameter set, the empirical distribution of log |Aut(G)| is shown in Figure 2. The distribution is symmetrical and this
justifies use of the symmetrical definition of p-value. A lower p-value indicates that the estimated parameters do not
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DD-model(n, bp, br,Gn0)
<latexit sha1_base64="LLjd4PxnoYgduD7He2duV4fZIYw=">AAAZnniclVltc9tEEL6Wt1IKpPApwxfRTGZKSYMThlKY6UzTlrplGteYpu0QZzKSJccisqVKtpNU4//Br+Er/AX+DbvPnmzJ1luTiX3a22d3b29f7hQr8Nxo3Gj8d+nye+9/8OFHVz6++sm1Tz/7fO36Fy8jfxL2nIOe7/nha8uMHM8dOQdjd+w5r4PQMYeW57yyTh/y/KupE0auP3oxvgico6F5MnL7bs8cE+l4bbd7aHRte+jbjndztNU9c21nYI7jYLYYh7Mto3kcj44bs2+M7tHx2kZju4EfY3WwowcbSv+0/evXbqmuspWvemqihspRIzWmsadMFdHvodpRDRUQ7UjFRAtp5GLeUTN1lbAT4nKIwyTqKX2e0NOhpo7omWVGQPdIi0d/ISENtal5bBr3QZVv1m+keIt0xJAd0Z9JiIHa0s+RuqBva/6cyIzmFOYeVlg/JtxdWO0SOgCF19PL2N6nb4+ex6SDPy+I06GRTaiQRj2ieUQVCusI6Vs8yGscwKMm+BwaRYU2GWQJ407VW225Df1snZPyFvMF9M376cAbFs1MsFu8A0Oy5hTjhtpWP6k75JXG/K/YJzHpYg3sa5Z+pnlZ+1lqji0ZYk9GZCFrNEmSRTMmfVo0ew7t8ixRdEh+PiRZj9UDkuUSjnfoiOQXWzMhKzzsRf7vJv1FJGtISA/+O1Ad9Sy1Syx1DJ+OSGaxJrbZp2exOFrRyZrE433tcRcRZ5Le2+oNSeWRC71Gat3Fex0T2sX+9XV05OkUTwc6eox53HMkRKmc2lHfqV3aXQPr7dGuF+sdQi+vJfHSbEXvMo9P2BC7PKDnsj2zkHUsJbFtAm+x/w1C8XwxeuG5PnZkTDgfecORuFmYywHFUx9858jnhbW8jnNtURd29JArnFlZLq6DEWKZ9d8zbrAk+izLF6ZEqAxiwUz7T2pFVpuhuQ1kdFV0RES3dGaNdbSJdJlhGSfIkHI56XpcVmU9GgWYm+hO4cPqLT3n66rGVTWPtvCzUWpNdj1lnh3pXhWi5pR1ohj+tiFToiUq5U7ql/TB8nq4GoVdVL5TaDHVFFJklkfTeRRP0F/Dd8KUd9yq/CjLeemfY6A87Z9FbV+u6F21p/axm3w2OAIl8fEh4trTXWkrFWH3kFGypq8J9wN9niG72EKWEqMC9EmuyP+ZRhvEOct0mlVrfkE/6c7XwV0mBjXdJ7uqTfrjDGdIoxj0WaWWB0tapBbEoJcjn9IaGWtkbOwTZQdeLEf3VGsFnehu1cJ3CvGdWvh2Ib5dA98p8Fun0m+tQmyrFroIW4V8WIB8WInsqScF2Cc1sM0CbLMS2ySKnEyY+zgnxpP5RFJ+JeD89NCR385rTZFOi9AS1zFyzCVcgKp2ga53oU9dC0uk4p2gascldJFbnZEW1cZE/7vqyKdP53qTCpjUDunOjJwCIc8ualvSqxLePRpNl+ySc9wp0fZSK0sQTeRXPn8zh7+tXuha+gfZEFBMyy2LY1TOhKE+iS44yyV0cIeoI0c4s9Ja72BRq9CmVSlVVrUq7GoSddmz2axa3jm+5eX1CJnJQ9iYz0PYOO0uI56S3X4uQmbyoo/7uAuEjEaYWZxPEj4PXUW+PXTzcIkj1BzhEsdmJtZ9nWFTmp3oPB7QJ58qB7hr3MFJzUjd1gzq6EKzkR1CkzcHWRsCZFCE/Yrnz1Vrs6A9no8iyg6Okay8LIajxtae5lExpvy809Gn2RPUm46usHKjkFNWCH4PlTbhrKpfHeh/U0NmwlctMUAueDVkLjirpTo11+7UXrmlHOxwlcSEr97KQ9yy6qxcOOv7M9C9OcIKmaeOb7/NzeZHVBtWK77UAJkrrjN5mKJKk1SzfEx+PUuqUx5muT6V92Yfc7P5k4f8W7yhiGuc7NvolnnVm0+eXbpBrM7sVUo9KJR6UENq/ROBeOgRaoynefa13Oc6Ck3cnEJ1C5LkLMK65R2ZPHfpHpXQsl1hpPvICDon8K2jbzPZ2invMbJdx9K9QObSkRqiAud7b6pr5uLuZyE66tzURHMZtgz9J1XvKIWWU3Nyv4xT7zl/Vb/j9riQXH4DPsfZ1cQbt+pa2KNoWH7DkZxRZpmqEKHDCYbfxohfWcttUD34I3nf0c2xI9nBffWsROuqzn3EC7/95Kh4hvfGDu7lA3R9W71EZIu/ytdso77IGx9vaYVjVJhH9Hs7wzM7XtvYWf6vw+rg5e72zvfbu7/tbty/q/8jcUV9pW6om7RvP6r7dG9qU1b21F/qb/WP+nfdWH+8vr/+XFgvX9KYL1XmZ/31/4s6CJg=</latexit>



9

Mismatch	in	the	number	of	symmetries	and	graph	statistics	with	the	mean-field	
approach
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fit the observed network, and a higher value gives an argument for the estimated parameters being in agreement with
the number of symmetries in Gobs.

Figure 2: Normalized histogram of logarithm of number of automorphisms when Gn ⇠
DD-model(500, 0.3, 0.4, K20).

4 Parameter Estimation and Why Existing Methods Fail in Practice?

Previous methods for the parameter estimation problem in the DD-model was first sketched in [3] and then considered
more rigorously in [12]. Later, [5, 4] provided some extensions to the estimation procedures using the mean-field
approximation of the average degree D(Gobs) together with the steady-state expression of the power-law exponent �

of the degree distribution. Then, the values of p and r are computed, respectively, from the formulas:

� = 1 +
1

p
� p

��2 and r =

✓
1

2
� p

◆
D(Gobs), for p <

1

2
.

Table 3 presents the estimates of parameters p and r using the above method. Additionally, we present the average
logarithm of the number of automorphisms computed from 10,000 graphs generated from the DD-model with the
estimated parameters.

Organism bp br E[log |Aut(Gn)|] p-value

Baker’s yeast 0.28 38.25 0 0
Human 0.43 2.39 10.81 0
Fruitfly 0.44 0.75 3771.99 0
Fission yeast 0.46 1.02 897.48 0
Mouse-ear cress 0.44 0.43 18596.72 0
Mouse 0.48 0.12 34961.69 0
Worm 0.47 0.14 15700.26 0

Table 3: Estimated parameters of the DD-model and average number of symmetries using mean-field approach.

Mismatch in the number of symmetries and graph statistics. Comparing Tables 2 and 3, we observe that the
number of symmetries of the graphs which are generated by the DD-model with parameters estimated via the mean-
field approach differs significantly with that of the real-world PPI networks. Moreover, the estimated p-values are
consistently zero for all the species because the observed values of the parameters under investigation fall far outside
the range of the empirical distribution of the parameters for synthetic graphs generated with estimated p and r. This
shows that the previously established estimation methods of the DD-model fail to capture the critical graph property
of automorphisms, and thus do not fit the PPI networks accurately.

As shown in Table 2, the PPI networks exhibit some significant amount of symmetry, but far less than the maximum
possible value (equal to n log n), which is attained when every node can be interchanged with every other node. This
observation, along with the p-value test in Section 3, allow us to discard not only many models which produce only
asymmetric graphs with high probability (such as Erdős-Renyi or preferential attachment model), but also effectively
stands as a hypothesis test to verify that the fitting obtained by an estimation procedure can be safely assumed to match
the model underlying real-world structures.
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Table 3: Estimated parameters of the DD-model and average number of symmetries using mean-field approach.

Mismatch in the number of symmetries and graph statistics. Comparing Tables 2 and 3, we observe that the
number of symmetries of the graphs which are generated by the DD-model with parameters estimated via the mean-
field approach differs significantly with that of the real-world PPI networks. Moreover, the estimated p-values are
consistently zero for all the species because the observed values of the parameters under investigation fall far outside
the range of the empirical distribution of the parameters for synthetic graphs generated with estimated p and r. This
shows that the previously established estimation methods of the DD-model fail to capture the critical graph property
of automorphisms, and thus do not fit the PPI networks accurately.

As shown in Table 2, the PPI networks exhibit some significant amount of symmetry, but far less than the maximum
possible value (equal to n log n), which is attained when every node can be interchanged with every other node. This
observation, along with the p-value test in Section 3, allow us to discard not only many models which produce only
asymmetric graphs with high probability (such as Erdős-Renyi or preferential attachment model), but also effectively
stands as a hypothesis test to verify that the fitting obtained by an estimation procedure can be safely assumed to match
the model underlying real-world structures.
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Why	existing	parameter	estimation	methods	fail	
in	practice	(contd.)?

Cutoff	neglects	a	huge	percentage	of	the	data

Organism b� Cuto↵ percentile

Baker’s yeast 4.55 94.98
Human 2.85 92.33
Fruitfly 2.71 88.00
Fission yeast 2.43 88.31
Mouse-ear cress 2.68 93.89
Mouse 2.29 78.58
Worm 2.41 88.23

<latexit sha1_base64="bSILkM2JRsGLoylt5RhyBMjCktQ="></latexit>

100 101 102 103

x

10�3

10�2

10�1

100

CCDF(x)

with cuto↵

original

Power-law	behavior

Complementary	cumulative	distribution	function	
(CCDF)	of	baker’s	yeast	and	power	law	fitting

Estimated	power	law	exponent	and	required	cutoff	
percentile	with	the	mean-field	approach

Asymptotic	and	steady-state	assumption
§ No	theoretical	proof	for	convergence	to	steady-state.	
§ Moreover,	steady-state	asymptotic	results,	even	when	achievable,	do	not	give	

any	bounds	on	the	rate	of	convergence
§ Assumes	the	average	degree	of	the	network	does	not	change	during	the	whole	

evolution.	
Jithin	K.	Sreedharan		BioKDD'19
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Our	method	based	on	recurrence	relations	of	graph	
statistics
A	set	of	the	exact	recurrence	relations	for	basic	graph	statistics,	which	
relate	their	values	at	time	𝑘 and	𝑘	 + 	1	of	graph	evolution.
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Steady state assumption. Previous research on the DD-model, both on the level of theoretical analysis of the model
properties and the level of parameter estimation of real-world PPI networks, focus heavily on the asymptotic and
steady-state behavior [3]. Most of the previous results on the functional form of certain graph statistics in the DD-
model are under the strong assumption of steady-state [28, 8]. But they do not provide any theoretical proof for
convergence to steady-state. Moreover, these steady-state asymptotic results, even when achievable, do not give any
bounds on the rate of convergence. This, in turn, raises questions about the straightforward applicability of such
theoretical results to parameter estimation.

The previously used methods of parameter estimation also suffer from another issue: for simplicity, they assume that
the average degree of the network does not change during the whole evolution from Gn0 to Gn. This is not only
highly implausible in practice, but also impose direct relation between p and r, and hides any dependency that might
be discovered from various properties of the networks.

Seed graph choice. As shown by previous studies (most notably in Hormozidari et al. [5]), choice of the seed graph
plays a significant role in graph evolution, directly contributing to the order of growth of many important graph
statistics.

The seed graph is typically assumed to be the largest clique (or a connected graph of the largest two cliques) of the
observed graph. Then random vertices and edges are gradually added to the network, preserving the average degree of
the final network, to make the size of the network to a fixed value of n0. This method is motivated by the infinitesimally
small probability with which there could appear a clique of a greater size during graph evolution. Such a procedure
has no formal theoretical guarantees and does not have any clear justification from a biological perspective [5].

Our natural approach to select the seed graph is based on the extra-network information about the estimated age of
proteins, described in Section 2.1.

5 Main results

Our main constructive results concern the relation between the parameters of the model and the number of symmetries
exhibited by graphs generated from it. Additionally, we present two parameter estimation algorithms, one based
on recurrences characteristic for certain graph statistics, the other based on the well-known maximum likelihood
approach.

5.1 Our method: parameter estimation using recurrence relations

Our basic tool to infer the parameters of DD-model for a given the PPI network is a set of the exact recurrence relations
for basic graph statistics, which relate their values at time k and k + 1 of graph evolution. Such recurrence relations
are sufficient to estimate model parameters, as the whole sequence of graphs from the initial graph Gn0 to the final
graph Gn can be split into steps consisting of the addition of a single vertex and the changes introduced by the added
vertex.

Typically, five statistics of the random graph Gn are studied in literature: number of edges E(Gn), mean degree of the
network D(Gn) = n

�1
Pn

i=1 degn(i), mean squared degree D2(Gn) = n
�1

Pn
i=1 deg2

n(i), number of triangles (3-
cliques) C3(Gn), and number of wedges S2(Gn) (wedges are also called 2-stars or paths of length 2 in prior literature,
and number of wedges includes counts of triangles and open triangles).

However, for every graph H on n vertices it is true that E(H) = n
2 D(H) and S2(n) = n

2 (D2(H)�D(H)). Therefore,
it is sufficient to analyze only the three of above-mentioned graph statistics: D(n), S2(n) and C3(n).

As a first step, we derive the following recurrence relations for the chosen statistics.
Theorem 1. If Gn+1 ⇠ DD-model(n + 1, p, r, Gn), then

E[D(Gn+1)|Gn] = D(Gn)
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E[S2(Gn+1)|Gn] = S2(Gn)
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Proof. See Appendix B

In Figure 4, we verify Theorem 1 by comparing E[Dn], for various n, computed using theory and experiments.

(a) Gn ⇠
DD-model(100, 0.2, 1.5,K10)

(b) Gn ⇠
DD-model(100, 0.5, 1.5,K10)

(c) Gn ⇠
DD-model(100, 0.8, 1.5,K10)

Figure 4: Comparison of E[D(Gn)] vs n computed via Theorem 1 and via experiments.

The expressions given in Theorem 1 implicitly define a function E[D(Gn)|Gn0 ] = FD(n, p, r, Gn0), which is a
cornerstone of our algorithm. Similar functions exist for recurrences based on other statistics of Gn0 and Gn. Now
we claim that the result of Theorem 1 in terms of expectation can be used for the graph statistics with high probability
too. Figure 5 shows the concentration of empirical distribution of different graph statistics.

(a) Distribution of D(Gn):
CV = 10.57%

(b) Distribution of D2(Gn):
CV = 17.99%

(c) Distribution of S2(Gn):
CV = 18.01%

(d) Distribution of C3(Gn):
CV = 22.90%

Figure 5: Empirical distribution of graph statistics: Gn ⇠ DD-model(100, 0.5, 1.5, K10). Coefficient of variation CV

is defined as the ratio of empirical standard deviation and empirical mean. The lower values of CV in the sub-figures
show the concentration of the considered graph statistics.

Although we don’t need an explicit formula for FD in our algorithm, we may derive one from the recurrences:

E[D(Gn)|Gn0 ] = D(Gn0)
n�1Y

k=n0

✓
1 +

2p � 1

k + 1
� 2r

k(k + 1)

◆
+

n�1X

k=n0

2r

k + 1

n�1Y

l=k+1

✓
1 +

2p � 1

l + 1
� 2r

l(l + 1)

◆
.

Although this is outside of the scope of this article, we note that such an expression allows us to find, for example, the
asymptotic order of growth for D(Gn) and for other statistics.

Though closed form solution of recurrences with Gn and Gn0 could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for finding bp with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming br is known beforehand. However, sufficient number of
samples of br from the interval [0, n0] is adequate to get a feasible solution set of {(bp, br)} with a desired resolution.
The algorithm also works for recurrence relations of S2(Gn) and C3(Gn) with evident modifications.
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Our	method	based	on	recurrence	relations	of	graph	
statistics	(contd.)
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E[S2(Gn+1)|Gn] = S2(Gn)
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Proof. See Appendix B

In Figure 4, we verify Theorem 1 by comparing E[Dn], for various n, computed using theory and experiments.

(a) Gn ⇠
DD-model(100, 0.2, 1.5,K10)

(b) Gn ⇠
DD-model(100, 0.5, 1.5,K10)

(c) Gn ⇠
DD-model(100, 0.8, 1.5,K10)

Figure 4: Comparison of E[D(Gn)] vs n computed via Theorem 1 and via experiments.

The expressions given in Theorem 1 implicitly define a function E[D(Gn)|Gn0 ] = FD(n, p, r, Gn0), which is a
cornerstone of our algorithm. Similar functions exist for recurrences based on other statistics of Gn0 and Gn. Now
we claim that the result of Theorem 1 in terms of expectation can be used for the graph statistics with high probability
too. Figure 5 shows the concentration of empirical distribution of different graph statistics.

(a) Distribution of D(Gn):
CV = 10.57%

(b) Distribution of D2(Gn):
CV = 17.99%

(c) Distribution of S2(Gn):
CV = 18.01%

(d) Distribution of C3(Gn):
CV = 22.90%

Figure 5: Empirical distribution of graph statistics: Gn ⇠ DD-model(100, 0.5, 1.5, K10). Coefficient of variation CV

is defined as the ratio of empirical standard deviation and empirical mean. The lower values of CV in the sub-figures
show the concentration of the considered graph statistics.

Although we don’t need an explicit formula for FD in our algorithm, we may derive one from the recurrences:

E[D(Gn)|Gn0 ] = D(Gn0)
n�1Y

k=n0

✓
1 +

2p � 1

k + 1
� 2r

k(k + 1)

◆
+

n�1X

k=n0

2r

k + 1

n�1Y

l=k+1

✓
1 +

2p � 1

l + 1
� 2r

l(l + 1)

◆
.

Although this is outside of the scope of this article, we note that such an expression allows us to find, for example, the
asymptotic order of growth for D(Gn) and for other statistics.

Though closed form solution of recurrences with Gn and Gn0 could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for finding bp with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming br is known beforehand. However, sufficient number of
samples of br from the interval [0, n0] is adequate to get a feasible solution set of {(bp, br)} with a desired resolution.
The algorithm also works for recurrence relations of S2(Gn) and C3(Gn) with evident modifications.
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cornerstone of our algorithm. Similar functions exist for recurrences based on other statistics of Gn0 and Gn. Now
we claim that the result of Theorem 1 in terms of expectation can be used for the graph statistics with high probability
too. Figure 5 shows the concentration of empirical distribution of different graph statistics.
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(b) Distribution of D2(Gn):
CV = 17.99%

(c) Distribution of S2(Gn):
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(d) Distribution of C3(Gn):
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Figure 5: Empirical distribution of graph statistics: Gn ⇠ DD-model(100, 0.5, 1.5, K10). Coefficient of variation CV

is defined as the ratio of empirical standard deviation and empirical mean. The lower values of CV in the sub-figures
show the concentration of the considered graph statistics.

Although we don’t need an explicit formula for FD in our algorithm, we may derive one from the recurrences:
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Although this is outside of the scope of this article, we note that such an expression allows us to find, for example, the
asymptotic order of growth for D(Gn) and for other statistics.

Though closed form solution of recurrences with Gn and Gn0 could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for finding bp with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming br is known beforehand. However, sufficient number of
samples of br from the interval [0, n0] is adequate to get a feasible solution set of {(bp, br)} with a desired resolution.
The algorithm also works for recurrence relations of S2(Gn) and C3(Gn) with evident modifications.
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In Figure 4, we verify Theorem 1 by comparing E[Dn], for various n, computed using theory and experiments.

(a) Gn ⇠
DD-model(100, 0.2, 1.5,K10)

(b) Gn ⇠
DD-model(100, 0.5, 1.5,K10)

(c) Gn ⇠
DD-model(100, 0.8, 1.5,K10)

Figure 4: Comparison of E[D(Gn)] vs n computed via Theorem 1 and via experiments.

The expressions given in Theorem 1 implicitly define a function E[D(Gn)|Gn0 ] = FD(n, p, r, Gn0), which is a
cornerstone of our algorithm. Similar functions exist for recurrences based on other statistics of Gn0 and Gn. Now
we claim that the result of Theorem 1 in terms of expectation can be used for the graph statistics with high probability
too. Figure 5 shows the concentration of empirical distribution of different graph statistics.

(a) Distribution of D(Gn):
CV = 10.57%

(b) Distribution of D2(Gn):
CV = 17.99%

(c) Distribution of S2(Gn):
CV = 18.01%

(d) Distribution of C3(Gn):
CV = 22.90%

Figure 5: Empirical distribution of graph statistics: Gn ⇠ DD-model(100, 0.5, 1.5, K10). Coefficient of variation CV

is defined as the ratio of empirical standard deviation and empirical mean. The lower values of CV in the sub-figures
show the concentration of the considered graph statistics.

Although we don’t need an explicit formula for FD in our algorithm, we may derive one from the recurrences:
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Although this is outside of the scope of this article, we note that such an expression allows us to find, for example, the
asymptotic order of growth for D(Gn) and for other statistics.

Though closed form solution of recurrences with Gn and Gn0 could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for finding bp with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming br is known beforehand. However, sufficient number of
samples of br from the interval [0, n0] is adequate to get a feasible solution set of {(bp, br)} with a desired resolution.
The algorithm also works for recurrence relations of S2(Gn) and C3(Gn) with evident modifications.
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Although this is outside of the scope of this article, we note that such an expression allows us to find, for example, the
asymptotic order of growth for D(Gn) and for other statistics.

Though closed form solution of recurrences with Gn and Gn0 could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for finding bp with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming br is known beforehand. However, sufficient number of
samples of br from the interval [0, n0] is adequate to get a feasible solution set of {(bp, br)} with a desired resolution.
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Now it is sufficient to sample n0
" different values of r, therefore the total running time to find suitable (bp, br) pairs is

⇥
�
n

1
" log 1

"

�
.

On the other hand, the MLE algorithm needs to compute at every step values of the ! function for all possible pairs of
v and w for each graph Gk. This is the case because in DD-model every vertex v could be a duplicate of every other
vertex w always with some non-zero probability at every stage of the algorithm. This means that we require ⇥(k2)
steps at each iteration of the algorithm; therefore ⇥

�Pn
k=n0

k
2
�

= ⇥(n3) steps in total. Unfortunately, even clever
bookkeeping and amortization is not much of a help here.

Additionally, we need to estimate the likelihood for each pair (p, r) independently, as maximum likelihood function
does not have the monotonicity property, so it requires in total ⇥

�
n

3 1
"2

�
steps to find all feasible pairs up to a desired

resolution of ✏.

Moreover, as it was suggested by Wiuf et al. in [16], importance sampling provides good quality results only for
at least 1000 independent trials. This adds up a constant factor not visible in the big-⇥ notation, but significant in
practice, effectively making the algorithm infeasible for the real-world data without using supercomputer power.

6 Numerical results

In this section, we evaluate our methods on synthetic graphs and real-world PPI networks.

Estimation of tolerance interval. We find the tolerance interval of the estimated p and r values for the fitted DD-
model as follows. For a given network Gobs and a seed graph Gn0 , first the RECURRENCE-RELATION algorithm
outputs a set of solutions {(bp, br)}. For each of the feasible pairs, we then estimate the confidence interval of the
graph property with which recurrence was calculated. For instance, if the property used was the empirical mean
D, graph samples generated from DD-model(n, bp, br, Gn0) are used to estimate expectation E[D(Gn)] and variance
Var[D(Gn))] of D(n). A 95% confidence interval of D(Gn) is then given by

⇣
E[D(Gn)] � 1.96 Var[D(Gn))], E[D(Gn)] + 1.96 Var[D(Gn))]

⌘
.

The Gaussian distribution assumption used in the above expression is indeed a good approximation for the distribution
of D for large n. Now by fixing bp, we can calculate a tolerance interval (brmin, brmax) for the estimated parameter
br. In the following experiments, for demonstrating the above approach, we focus on two graph statistics D and C3

(parameter estimation will include S2 too).

Our estimation procedure can be summarized follows:

• We employ the RECURRENCE-RELATION algorithm for solving graph recurrences of the three graph statistics D,
S2 and C3, and we identify a set of solutions for p and r.

• With Gn ⇠ DD-model(n, bp, br, Gn0), we find the tolerance interval of br using the confidence interval of D(Gn) and
C3(Gn).

• We look for crossing points of the plots in the figure, and the range of values of p and r where the confidence
intervals meet around the crossing point. We call such a range of values as feasible-box.

• Though any point in the feasible-box is a good estimate of p and r, to improve the accuracy, we uniformly sample a
fixed number of points from the box and choose the pair that gives maximum p-value with respect to the number of
automorphisms of the given graph Gobs.

6.1 Synthetic graphs

In this section, we derive insights by studying our method and MLE empirically on synthetic data. We generate two
random graph samples G

(1)
n and G

(2)
n from the DD-model with the following parameters:

G
(1)
n ⇠ DD-model(n = 100, p = 0.1, r = 0.3, Gn0 = K20),

G
(2)
n ⇠ DD-model(n = 100, p = 0.99, r = 3.0, Gn0 = K20).

The choice of parameters in G
(1)
n and G

(2)
n show different regimes in the following studies. Moreover the parameters

are chosen in such a way that the generated graphs have non-trivial symmetries.

Figures 6a and 6b plot the sets of feasible points identified by the recurrence relations using RECURRENCE-RELATION
method. The light shaded bands show the tolerance intervals of r. We observe that the crossing points and the tolerance
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of D for large n. Now by fixing bp, we can calculate a tolerance interval (brmin, brmax) for the estimated parameter
br. In the following experiments, for demonstrating the above approach, we focus on two graph statistics D and C3
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S2 and C3, and we identify a set of solutions for p and r.

• With Gn ⇠ DD-model(n, bp, br, Gn0), we find the tolerance interval of br using the confidence interval of D(Gn) and
C3(Gn).

• We look for crossing points of the plots in the figure, and the range of values of p and r where the confidence
intervals meet around the crossing point. We call such a range of values as feasible-box.

• Though any point in the feasible-box is a good estimate of p and r, to improve the accuracy, we uniformly sample a
fixed number of points from the box and choose the pair that gives maximum p-value with respect to the number of
automorphisms of the given graph Gobs.

6.1 Synthetic graphs

In this section, we derive insights by studying our method and MLE empirically on synthetic data. We generate two
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n and G
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(1)
n and G

(2)
n show different regimes in the following studies. Moreover the parameters

are chosen in such a way that the generated graphs have non-trivial symmetries.

Figures 6a and 6b plot the sets of feasible points identified by the recurrence relations using RECURRENCE-RELATION
method. The light shaded bands show the tolerance intervals of r. We observe that the crossing points and the tolerance

11

Recurrence-Relation	method Log-likelihood

Log-likelihood	function	of	MLE	is	nearly	flat	for	large	values	of	𝑝,	thus	MLE	
returns	less	reliable	estimates

A PREPRINT - JUNE 17, 2019

intervals are fairly close to the original parameters. Figures 6c and 6d display the heat-plot of log-likelihood function
of the MLE for different values of the parameters. The log-likelihood function maximizes at (p, r) pairs close to the
original parameters, but not up to the resolution of RECURRENCE-RELATION method.

(a) RECURRENCE-RELATION: G(1)
n ⇠

DD-model(100, 0.1, 0.3,K20).
(b) RECURRENCE-RELATION: G(2)

n ⇠
DD-model(100, 0.99, 3.0,K20)

(c) MLE: log-likelihood with G(1)
n ⇠

DD-model(100, 0.1, 0.3,K20).
(d) MLE: log-likelihood with G(2)

n ⇠
DD-model(100, 0.99, 3.0,K20)

Figure 6: Results on synthetic networks: RECURRENCE-RELATION and maximum likelihood estimation (MLE) meth-
ods

RECURRENCE-RELATION MLE

Model parameters log |Aut(Gobs)| bp br E[log |Aut(Gn)|] p-value bp br E[log |Aut(Gn)|] p-value

p = 0.1, r = 0.3 81.963 0.09 0.3 81.974 0.980 0.1 0.3 78.794 0.820
p = 0.99, r = 3.0 16.178 0.99 2.5 16.588 0.980 0.95 0.3 0.368 0

Table 6: Results on synthetic networks: average number of automorphisms and p-value

In Table 6 we produce the statistical significance of the best estimated parameter pairs via both the RECURRENCE-
RELATION and the MLE. The best pair is found in the RECURRENCE-RELATION method from 1000 uniform samples
in the feasible-box centered at the point where the three curves are in agreement, and for the MLE, it is found from
1000 uniform samples in the maximum log-likelihood area if no unique maximizer exists. The estimates from both
the techniques demonstrate the presence of the DD-model in the given graphs G

(1)
n and G

(2)
n (p-value > 0.1), the best

pair of RECURRENCE-RELATION estimator has much higher p-value and certainly outperforms MLE.

We note that for the first graph G
(1)
n the results obtained by both methods are almost identical, in terms of

E[log |Aut(Gn)|] and p-values. For the second graph G
(2)
n , the log-likelihood function of MLE is nearly flat for

large values of p, and thus MLE returns less reliable estimates. This in turn results in a larger deviation of the number
of automorphisms from the observed graph. Our algorithm on the other hand provides a better estimate even when p

is close to 1. To sum up, we find that our algorithm does not perform worse than MLE in terms of quality and achieves
better performance than MLE when p is high. It also has much lower computational complexity.
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Results	on	protein-protein	networks:	Recurrence	-Relation	method
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Results	on	protein-protein	networks	(contd.)
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6.2 Real-world PPIs

We apply recurrence-based estimator to PPI networks of seven species listed in Table 2. As mentioned in Section 2.1,
the seed graph Gn0 is assumed as the graph induced by the nodes having the largest phylogenetic age.

Figure 7 presents plots of RECURRENCE-RELATION estimator for seven species. In all the figures, the plots meet
or come very close at a specific point. This illustrates the presence of the DD-model in all the considered species.
Furthermore, Table 7 calculates the statistical significance of the fitted DD-model with respect to the number of
automorphisms in the observed PPI networks. The estimated p-values are remarkably high and most often much
larger than 0.4 (except in one case), demonstrating that the fitted DD-models exhibit symmetries closer to the real-
world PPIs.

Organism bp br E[log |Aut(Gn)|] p-value

Baker’s yeast 0.98 0.35 293.27 0.71
Human 0.64 0.49 2998.81 0.51
Fruitfly 0.53 0.92 1073.83 0.64
Fission yeast 0.983 0.85 705.278 0.74
Mouse-ear cress 0.98 0.49 6210.36 0.13
Mouse 0.96 0.32 8067.56 0.67
Worm 0.85 0.35 3352.91 0.48

Table 7: Parameters of the real-world PPI networks estimated using RECURRENCE-RELATION method

(a) Baker’s yeast (b) Fruitfly (c) Fission yeast

(d) Mouse-ear cress (e) Mouse

(f) Human (g) Worm

Figure 7: Results on PPI networks: RECURRENCE-RELATION method
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Conclusions
§ Fitting	dynamic	biological	networks	to	a	probabilistic	graph	model	from	a	
single	snapshot	of	the	evolution	with	stress	on	a	key	characteristic	of	the	
networks	– the	number	of	automorphisms – that	is	often	neglected	in	
modeling.	

§ Combined	the	number	of	automorphisms with	a	faster	method	of	recurrence	
relations	to	to	narrow	down	the	parameter	search	space

§ Much	lower	computational	complexity	
§ Tested	on	protein-protein	interaction	data	of	7	species
§ Be	extra	careful	when	applying	mean-field	approach	without	strong	
theoretical	guarantees

§ Used	up-to-date	PPI	data	so	that	the	fitted	parameters	in	this	paper	can	
serve	as	a	benchmark	for	future	studies

Slides,	paper,	code,	and	data	are	available	at	cs.purdue.edu/homes/jithinks/

Thank	You!
Jithin	K.	Sreedharan		BioKDD'19
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fit the observed network, and a higher value gives an argument for the estimated parameters being in agreement with
the number of symmetries in Gobs.
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Figure 2: Normalized histogram of logarithm of number of automorphisms when Gn ⇠
DD-model(500, 0.3, 0.4, K20).

4 Parameter Estimation and Why Existing Methods Fail in Practice?

Previous methods for the parameter estimation problem in the DD-model was first sketched in [3] and then considered
more rigorously in [12]. Later, [5, 4] provided some extensions to the estimation procedures using the mean-field
approximation of the average degree D(Gobs) together with the steady-state expression of the power-law exponent �

of the degree distribution. Then, the values of p and r are computed, respectively, from the formulas:

� = 1 +
1

p
� p

��2 and r =

✓
1

2
� p

◆
D(Gobs), for p <

1

2
.

Table 3 presents the estimates of parameters p and r using the above method. Additionally, we present the average
logarithm of the number of automorphisms computed from 10,000 graphs generated from the DD-model with the
estimated parameters.

Organism bp br E[log |Aut(Gn)|] p-value

Baker’s yeast 0.28 38.25 0 0
Human 0.43 2.39 10.81 0
Fruitfly 0.44 0.75 3771.99 0
Fission yeast 0.46 1.02 897.48 0
Mouse-ear cress 0.44 0.43 18596.72 0
Mouse 0.48 0.12 34961.69 0
Worm 0.47 0.14 15700.26 0

Table 3: Estimated parameters of the DD-model and average number of symmetries using mean-field approach.

Mismatch in the number of symmetries and graph statistics. Comparing Tables 2 and 3, we observe that the
number of symmetries of the graphs which are generated by the DD-model with parameters estimated via the mean-
field approach differs significantly with that of the real-world PPI networks. Moreover, the estimated p-values are
consistently zero for all the species because the observed values of the parameters under investigation fall far outside
the range of the empirical distribution of the parameters for synthetic graphs generated with estimated p and r. This
shows that the previously established estimation methods of the DD-model fail to capture the critical graph property
of automorphisms, and thus do not fit the PPI networks accurately.

As shown in Table 2, the PPI networks exhibit some significant amount of symmetry, but far less than the maximum
possible value (equal to n log n), which is attained when every node can be interchanged with every other node. This
observation, along with the p-value test in Section 3, allow us to discard not only many models which produce only
asymmetric graphs with high probability (such as Erdős-Renyi or preferential attachment model), but also effectively
stands as a hypothesis test to verify that the fitting obtained by an estimation procedure can be safely assumed to match
the model underlying real-world structures.

6



19

A PREPRINT - JUNE 17, 2019

Similarly, for certain graph statistics D(Gn), S2(Gn) and C3(Gn) (see Table 1 for notation), which are considered
later in Section 5.1 for deriving our methods, we observe from Table 4 that the estimated parameters do not yield
graphs that have the considered statistics close to the observed graph. Here the p-values are calculated in an equivalent
way of number symmetries, just that now it is computed with respect to the graph statistics.

We would like to point out several other deficiencies in the known estimation procedures, which could be the reasons
behind such a divergence between the number of symmetries of the PPI networks and its proposed theoretical model.

Organism D(Gobs) E[D(Gn)] p-value S2(Gobs) E[S2(Gn)] p-value C3(Gobs) E[C3(Gn)] p-value

Baker’s yeast 172.76 115.10 0 220.35M 45.33M 0 9.77M 370.49K 0
Human 34.30 19.39 0 52.25M 7.02M 0 1.07M 105K 0
Fruitfly 13.11 7.87 0 2.94M 1.45M 0 195.96K 77.61K 0
Fission yeast 27.64 6.72 0 7.42M 215.84K 0 223.61K 1.14K 0
Mouse-ear cress 7.39 2.23 0 2.98M 44.46K 0 23.34K 23.27 0
Mouse 5.35 0.82 0 2.95M 9.33K 0 10.22K 0.79 0
Worm 4.04 0.90 0 346.13K 5.32K 0 2.41K 0.49 0

Table 4: Comparison of certain graph statistics of the observed graph and that of the synthetic data with parameters
estimated via the mean-field approach.

Power-law behavior. The parameter estimation of the DD-model introduced in prior works, such as the one that was
presented at the beginning of this section, assumes that the PPI networks are scale-free. This property, stating that
the degree distribution of the PPI networks is heavy-tailed or, more precisely, that the number of vertices of degree
k is proportional to k

�� for some constant � > 0 [23, 24]. With this assumption, some (see [8] for example) argue
that the estimated value of the exponent for the PPI networks satisfies 2 < � < 3. However, there are some serious
counterarguments to this claim, and it is challenged on statistical grounds that the PPI graphs do not fall into the
power-law degree distribution category [25, 26].

To each of the PPI networks in Table 2, we fit the coefficients of power-law distribution with the cut-off following the
methodology of Clauset et al. [27]. We note here that cutoff is required in all the cases since the power-law behavior
mostly happens in the tails of the degree distribution. However, we find that the cutoff neglects a huge percentage of
the data. For example, for a fitting of baker’s yeast PPI network, as shown in Figure 3, the cutoff is 582, which is at
94.98 percentile of the degree data, i.e., the power-law fitting does not take into account 94.98% of the data. With the
cutoff and the percentiles of all the species listed in Table 5, we remark that any method to estimate the parameters p

and r involving power-law exponent need not result in good approximations since it discards data from a majority of
the network.

Figure 3: Complementary cumulative distribution function (CCDF) of baker’s yeast and power law fitting.

Organism b� Cutoff percentile

Baker’s yeast 4.55 94.98
Human 2.85 92.33
Fruitfly 2.71 88.00
Fission yeast 2.43 88.31
Mouse-ear cress 2.68 93.89
Mouse 2.29 78.58
Worm 2.41 88.23

Table 5: Estimated power law exponent and required cutoff percentile with the mean-field approach
7
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Why	existing	parameter	estimation	methods	
fail	in	practice?

Seed	graph	choice

§ The	seed	graph	is	typically	assumed	to	be	the	largest	clique	of	the	
observed	graph.	Then	random	vertices	and	edges	are	gradually	
added	to	the	network,	preserving	the	average	degree	of	the	final	
network,	to	make	the	size	of	the	network	to	a	fixed	value	of	𝑛)

§ No	formal	theoretical	guarantees	and	does	not	have	clear	
justification
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Algorithm 1 Parameter estimation via recurrence relation of D(Gn).
1: function RECURRENCE-RELATION(n, r, Gn0 , D(Gn), ")
2: Dmin  FD(n, 0, r, Gn0), Dmax  FD(n, 1, r, Gn0)
3: if Dmin > D(Gn) or Dmax < D(Gn) then

4: return “no suitable solution for p”
5: pmin  0, pmax  1
6: while pmax � pmin > " do

7: p
0  pmin+pmax

2 , D
0  FD(n, p

0
, r, Gn0)

8: if D
0
< D(Gn) then pmin  p

0
else pmax  p

0

9: return pmin

We note here that for each graph property under consideration, D, S2 or C3, the estimation algorithm returns a curve
(more precisely, a set of feasible points). Now, if we find a concurrence in the solutions to the recurrence relations
of various graph statistics, we know that a necessary condition for the presence of duplication-divergence model has
been satisfied. On the other hand, if the curves were not having a common crossing point, it suggests that the DD-
model may not be the appropriate fit for the observed network. We denote the above estimation procedure using the
recurrence relations of all three graph statistics as the RECURRENCE-RELATION method.

5.2 Parameter estimation via maximum likelihood method

An alternative way of estimating parameters of the DD-model is the maximum likelihood estimation (MLE). With
MLE, the estimated parameters bp and br are given by max✓=(p,r) L(✓, Gn), where the likelihood function is L(✓, Gn)
is the probability of generating Gn from Gn0 for fixed parameters ✓, i.e.

L(✓, Gn) := Pr(Gn|Gn0 ; ✓)

=
X

Gn0+1,...,Gn�1,Gn2G(Gn0 ,Gn)

nY

k=n0+1

Pr(Gk|Gk�1; ✓),

where G(Gn0 , Gn) is the set of all sequences of graphs that starts with Gn0 and ends at Gn. Given a fixed sequence of
graph evolution history (Gn0 , . . . , Gn�1, Gn), it is straightforward to calculate the likelihood, but L(✓, Gn) requires
summation over all histories, which has exponential number of possibilities. In [16], the authors present an impor-
tance sampling strategy to approximate the likelihood and thereby estimate the parameters. It is based on the idea of
traversing backwards in history (Gn to Gn�1 and Gn�1 to Gn�2 likewise) on one sample path of graph evolution
sequence via Markov chain. We adapt their algorithm to our DD-model and the complete algorithm is presented in
Supplementary Material.

We now provide a brief description of the importance sampling procedure. The idea is to express likelihood in terms
of a known reference parameter ✓0 instead of unknown ✓. Now, the likelihood can be rewritten as an expectation with
respect to ✓0 and can be estimated via Monte Carlo simulations (see [16] for more details):

L(✓, Gn) = E✓0

"
nY

k=n0

S(✓0, ✓, Gk, v)

#
,

where

S(✓0, ✓, Gk, v) =
1

k
!(Gk, ✓, v)

!(Gk, ✓0)

!(Gk, ✓0, v)
.

Here !(Gk, ✓, v) is the probability of creating the graph Gk from Gk�1 through the addition of a node v, with pa-
rameter as ✓. v can be chosen as any node in Gk such that its removal would result in a positive probability Gk�1

under the DD-model. The variable !(Gk, ✓) is the transition probability !(Gk, ✓, v), summed over all possible v. In
fact, !(Gk, ✓, v) itself is the normalized sum of !(Gk, ✓, v, w), over all possible nodes w, which is the probability of
producing a graph Gk from Gk�1 by adding a node v that is duplicated from node w.

5.3 Computational complexity of parameter estimation methods

Let us now assume that the n0 is fixed and we are interested in results up to a resolution ", that is, the values of p and
r are stored in such a way that two numbers within a distance less than " are indistinguishable.

For our algorithm 1, RECURRENCE-RELATION, a single pass requires ⇥
�
n log 1

"

�
, as it uses a binary search for

p and for every intermediate value of p it executes exactly n � n0 steps of for loop, each requiring constant time.

10
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Now it is sufficient to sample n0
" different values of r, therefore the total running time to find suitable (bp, br) pairs is

⇥
�
n

1
" log 1

"

�
.

On the other hand, the MLE algorithm needs to compute at every step values of the ! function for all possible pairs of
v and w for each graph Gk. This is the case because in DD-model every vertex v could be a duplicate of every other
vertex w always with some non-zero probability at every stage of the algorithm. This means that we require ⇥(k2)
steps at each iteration of the algorithm; therefore ⇥

�Pn
k=n0

k
2
�

= ⇥(n3) steps in total. Unfortunately, even clever
bookkeeping and amortization is not much of a help here.

Additionally, we need to estimate the likelihood for each pair (p, r) independently, as maximum likelihood function
does not have the monotonicity property, so it requires in total ⇥

�
n

3 1
"2

�
steps to find all feasible pairs up to a desired

resolution of ✏.

Moreover, as it was suggested by Wiuf et al. in [16], importance sampling provides good quality results only for
at least 1000 independent trials. This adds up a constant factor not visible in the big-⇥ notation, but significant in
practice, effectively making the algorithm infeasible for the real-world data without using supercomputer power.

6 Numerical results

In this section, we evaluate our methods on synthetic graphs and real-world PPI networks.

Estimation of tolerance interval. We find the tolerance interval of the estimated p and r values for the fitted DD-
model as follows. For a given network Gobs and a seed graph Gn0 , first the RECURRENCE-RELATION algorithm
outputs a set of solutions {(bp, br)}. For each of the feasible pairs, we then estimate the confidence interval of the
graph property with which recurrence was calculated. For instance, if the property used was the empirical mean
D, graph samples generated from DD-model(n, bp, br, Gn0) are used to estimate expectation E[D(Gn)] and variance
Var[D(Gn))] of D(n). A 95% confidence interval of D(Gn) is then given by

⇣
E[D(Gn)] � 1.96 Var[D(Gn))], E[D(Gn)] + 1.96 Var[D(Gn))]

⌘
.

The Gaussian distribution assumption used in the above expression is indeed a good approximation for the distribution
of D for large n. Now by fixing bp, we can calculate a tolerance interval (brmin, brmax) for the estimated parameter
br. In the following experiments, for demonstrating the above approach, we focus on two graph statistics D and C3

(parameter estimation will include S2 too).

Our estimation procedure can be summarized follows:

• We employ the RECURRENCE-RELATION algorithm for solving graph recurrences of the three graph statistics D,
S2 and C3, and we identify a set of solutions for p and r.

• With Gn ⇠ DD-model(n, bp, br, Gn0), we find the tolerance interval of br using the confidence interval of D(Gn) and
C3(Gn).

• We look for crossing points of the plots in the figure, and the range of values of p and r where the confidence
intervals meet around the crossing point. We call such a range of values as feasible-box.

• Though any point in the feasible-box is a good estimate of p and r, to improve the accuracy, we uniformly sample a
fixed number of points from the box and choose the pair that gives maximum p-value with respect to the number of
automorphisms of the given graph Gobs.

6.1 Synthetic graphs

In this section, we derive insights by studying our method and MLE empirically on synthetic data. We generate two
random graph samples G

(1)
n and G

(2)
n from the DD-model with the following parameters:

G
(1)
n ⇠ DD-model(n = 100, p = 0.1, r = 0.3, Gn0 = K20),

G
(2)
n ⇠ DD-model(n = 100, p = 0.99, r = 3.0, Gn0 = K20).

The choice of parameters in G
(1)
n and G

(2)
n show different regimes in the following studies. Moreover the parameters

are chosen in such a way that the generated graphs have non-trivial symmetries.

Figures 6a and 6b plot the sets of feasible points identified by the recurrence relations using RECURRENCE-RELATION
method. The light shaded bands show the tolerance intervals of r. We observe that the crossing points and the tolerance
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