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The Problem: Fitting a model

Data stream or
fixed data of
interactions

Dynamic graph Parameter fitting

Model Estimated
:> ﬁ> parameters
Pr(G,|G,;0)

\\ Parameters of

the model
Observed Seed graph
graph

= Data usually represents a single snapshot G, := G,, of the graph of dynamic
evolution G,,,G,,_1,...,Gp,

= Random graph models tailored to specific applications provide deep insights
unlike general learning models

= Examples: asymptotic behavior, clustering properties, properties of motifs
(subgraphs or lower/higher order structures), diffusion over the graph etc
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Why need to revisit the estimation methods?

Symmetries of the graph

= Most of the existing parameter estimation techniques overlook the critical
property of graph symmetry (also known formally as graph automorphisms).

= The estimated parameters give statistically insignificant results concerning the
observed network

Goal-1: Take into account the number of automorphisms of the observed

network to restrict the parameter search to a more meaningful range

Parameter estimation methods

= Existing methods heavily depend upon stead-state assumption and asymptotic
properties of the graph model

= Many of these assumptions has been proven not to exist or exist with strong
conditions

Goal-2: Use exact non-asymptotic relations
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Given one snapshot of
the graph, (n — ny)!
ways to arrange the
order of arrival of nodes

Maximum likelihood method

A

0 = argmax Pr(G,|Gp,;0)

— > I] Pr(GilGr-1;0)

Gno—i-la-"aGn—laGneg(GnO ,Gn) k:’)’Lo—Fl
*— setofall sequences of graphs that starts with G, and ends at G,

= Direct computation of likelihood of a dynamic graph model requires O(n!)

computations

= (Clever techniques with importance sampling or expectation-maximization still
requires huge complexity

= For e.g., for Duplication-Divergence graph model, it is ©(n3/e?) with a large hidden
constant factor (n: no. of nodes, ¢: required resolution)

Goal-3: Achieve O(n) complexity
Seed graph choice

= Seed graphs play an important role in biological networks
= Previous solutions form seed graphs as cliques

Goal-4: Form a seed graph with biological relevance



Duplication-Divergence model
(vertex-copying model)

Start with seed graph G, . A time step k:

= Duplication: Select a node u from G, uniformly at random. New
node v copies all connections of w.
= Divergence: Each of the new made connections of v are randomly

deleted with probability 1 — p. For all other nodes, create a
connection randomly with v with probability r/k




Datasets Used

Protein-protein interaction (PP1) networks of 7 species

Data collected from BioGRID. Removed self-interactions (self-loops), multiple interactions (multiple
edges), and interspecies (organisms) interactions of proteins.

Original graph Gops Seed graph G,
Organism Scientific name #Nodes #Edges log|Aut(G)] # Nodes # Edges
Baker’s yeast Saccharomyces cerevisiae 6,152 531,400 267 548 5,194
Human Homo sapiens 17,295 296,637 3026 546 2,822
Fruitfly Drosophila melanogaster 9,205 60,355 1026 416 1,210
Fission yeast Schizosaccharomyces pombe 4177 58,084 675 412 226
Mouse-ear cress  Arabidopsis thaliana Columbia 9,388 34,885 6696 613 41
Mouse Mus musculus 6,849 18,380 7827 305 {f
Worm Caenorhabditis elegans 3,869 7,815 3348 185 15

Selection of seed graph

As the graph induced in the PPl network by the oldest proteins, those with
the largest phylogenetic age (taxon age)

The age of a protein is based on its family’s appearance on a species tree,
and is estimated via protein family databases and ancestral history

reconstruction algorithms
Princeton Protein Orthology Database (PPOD) along with OrthoMCL and PANTHER for the
protein family database and asymmetric Wagner parsimony as the ancestral history

reconstruction algorithm
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Influence of Parameters on Symmetries of the Model

Symmetries of the graph (Graph Automorphism): a

An automorphism of G is adjacency preserving permutation of b C
vertices of G (i.e., a form of symmetry)

The collection Aut(G) of automorphisms of G is called d e

autmorphism group of G

= Neglected in most of the prior works

= Real-world PPI networks exhibit large number of symmetries

= Erd6s—Rényi and preferential attachment models are asymmetric with
high probability

=  Cross-checking with the number of automorphisms of the real-world
network forms a null hypothesis test for the model under
consideration
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Influence of Parameters on Symmetries of the Model
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For large ranges of p and r, it is impossible to generate graphs with large number of
automorphisms

Statistical test for significance of the number of symmetries with the
estimated parameters

Let GU,...,G™ be m graphs generated from the DD-model(n, p, 7, G,,,) With the
estimated parameters using any fitting method

m

1 .
w=—3 1{log|Aut(G?)| > log |Aut(Gops
p m; {log [Aut(G”)| = log |Aut(Gops)|}

p-value = 2min{p,,p;}.

m

1 .
P = = Z 1{log |Aut(G§f))| < log |Aut(Gobs)| }

=l 8



Why existing parameter estimation methods fail
in practice (contd.)?

Organism D T E[log |Aut(G,)|]  p-value
Baker’s yeast 0.28 38.25 0 0
Human 0.43 2.39 10.81 0
Fruitfly 0.44  0.75 3771.99 0
Fission yeast 0.46 1.02 897.48 0
Mouse-ear cress  0.44  0.43 18596.72 0
Mouse 0.48 0.12 34961.69 0
Worm 0.47 0.14 15700.26 0

Mismatch in the number of symmetries and graph statistics with the mean-field
approach
4 2andr= (- D(Gops), fi <1
Y= D p anar = 9 p obs), 10I'D 2-

Power-law exponent Average degree
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Why existing parameter estimation methods fail
in practice (contd.)?

Power-law behavior

109 <

Organism ~ Cutoff percentile :

Baker’s yeast 4.55 94.98 v

Human 2.85 92.33 CCDE(r) -

Fruitfly 2.71 88.00 5

Fission yeast 2.43 88.31 10-3+ === with cutoff

Mouse-ear cress  2.68 93.89 - - original

Mouse 2.29 78.58 ! I )
Worm 2.41 88.23 107 1o 1 1

X

Estimated power law exponent and required cutoff =~ Complementary cumulative distribution function
percentile with the mean-field approach (CCDF) of baker’s yeast and power law fitting

Cutoff neglects a huge percentage of the data

Asymptotic and steady-state assumption

= No theoretical proof for convergence to steady-state.

= Moreover, steady-state asymptotic results, even when achievable, do not give
any bounds on the rate of convergence

= Assumes the average degree of the network does not change during the whole

evolution.
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Our method based on recurrence relations of graph
statistics

A set of the exact recurrence relations for basic graph statistics, which
relate their values at time k and k + 1 of graph evolution.

Theorem
If G411 ~ DD-model(n + 1,p,r,G,), then
2p —1 2 2
E[D(Guy1)|Ga] = D(Gy) (14 = ——— ) 4+ —
n+1 n(n+1) n+1
Mean degree i1 2(1+p) )
E[D2(Gn11)|Gn] = Da(Gin) (1 R e e T )
Mean squared__—> n+1 n(n+1)  n*(n+1)
degree 2p —p? 4+ 2pr +2r  2r + 2r? 72 2r? + 2r 8
+ D(Gn) — - -
n+1 nn+1) n?(n+1) n+1 n(n+1)
3p°>  6pr  3r? pr r? 72
BICA(G)[Ga] = Ca(Go) (14 2 = 5 50 4 D) (2 - ) 4 DG
No. of triangles ) 2 ) )
E[S2(Ghy)|Gal = Sa(G) (14 2220 222 D T
n n? n3
No. of wedges — M 2,2
+D(Gy) (pr+ptr—2 S E
(paths of length 2) n) \ P TP o 2 5 " on
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Our method based on recurrence relations of graph
statistics (contd.)
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* Find solution set {(p,7)} with recurrence-relations of each graph properties

= |f we find a concurrence in their solutions, a necessary condition for the

presence of duplication-divergence model has been satisfied
= Qutput the converging point as the fitted parameter set

. L For theoreticq)
= Computational complexity is ©(n/elog(1/e)) Vesults, see ¢,
. e

Paper
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Results on synthetic networks: Recurrence -Relation method

Recurrence-Relation method Log-likelihood
GV ~ DD-model(n = 100,p = 0.1,7 = 0.3, Gy, = Ka),

10.0 4
48 - , — vaeiree 9.0 -
‘ —— Wedges i —400
4.0 - = Triangles 38 |
p32 6.0 ~600
2.4 - r 5.0
1.6 - ‘3‘-8 T —-800
0.0 - 1.0 4
0.00 0.02 0.04 0.06 0.08 0.10 0.12 00—
p 0.00.10.20.30.40.50.60.70.80.91.0
p
G? ~ DD-model(n = 100,p = 0.99,r = 3.0, Gp, = Ka0).
01 - 10.0 A
9.0 —2000
18 - 8.0 -
5- 70 —4000
12+ - g-g: —6000
For 9- 4.0 —8000
confidence : - 40
Lt " = Degree ] —10000
crval 8- R i.g - 12000
GQLG"(LQ‘L'(’,OVL’ 0 - = Triangles 0.0 - -

see the paper 0.936 0.944 0.952 0.960 0.968 0.976 0.984 0.00.10.20.30.405060.70.80.91.0

p
p
RECURRENCE-RELATION MLE
Model parameters  log |Aut(Gobs)] D 7  Ellog|Aut(Gy,)|] | p-value D 7  Ellog|Aut(G,)|] p-value
p=0.1,r=0.3 81.963 0.09 0.3 81.974 0.980 0.1 0.3 78.794 0.820
p=0.99,r=3.0 16.178 099 25 16.588 0.980 095 0.3 0.368 0

Log-likelihood function of MLE is nearly flat for large values of p, thus MLE
returns less reliable estimates 13



Results on protein-protein networks: Recurrence -Relation method
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Results on protein-protein networks (contd.)

Organism D 7 E[log |Aut(G,)|] p-value
Baker’s yeast 0.98 0.35 293.27 0.71
Human 0.64 0.49 2998.81 0.51
Fruitfly 0.53 0.92 1073.83 0.64
Fission yeast 0.983 0.85 705.278 0.74
Mouse-ear cress  0.98  0.49 6210.36 0.13
Mouse 0.96 0.32 8067.56 0.67
Worm 0.85 0.35 3352.91 0.48

Parameters of the real-world PPl networks estimated using
Recurrence -Relation method
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Conclusions

Fitting dynamic biological networks to a probabilistic graph model from a
single snapshot of the evolution with stress on a key characteristic of the
networks — the number of automorphisms — that is often neglected in
modeling.

Combined the number of automorphisms with a faster method of recurrence
relations to to narrow down the parameter search space

Much lower computational complexity

Tested on protein-protein interaction data of 7 species

Be extra careful when applying mean-field approach without strong
theoretical guarantees

Used up-to-date PPI data so that the fitted parameters in this paper can
serve as a benchmark for future studies

Slides, paper, code, and data are available at cs.purdue.edu/homes/jithinks/

Thank You!
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Organism D(Gobs) E[D(Gn)] p-value S2(Gobs) E[S2(Grn)] p-value C3(Gobs) E[C5(Gn)] p-value
Baker’s yeast 172.76 115.10 0 220.35M 45.33M 0 9.77T™M 370.49K 0
Human 34.30 19.39 0 52.25M 7.02M 0 1.07T™M 105K 0
Fruitfly 13.11 7.87 0 2.94M 1.45M 0 195.96K 77.61K 0
Fission yeast 27.64 6.72 0 7.42M 215.84K 0 223.61K 1.14K 0
Mouse-ear cress 7.39 2.23 0 2.98M 44.46K 0 23.34K 23.27 0
Mouse 5.35 0.82 0 2.95M 9.33K 0 10.22K 0.79 0
Worm 4.04 0.90 0 346.13K 5.32K 0 2.41K 0.49 0

Table 4: Comparison of certain graph statistics of the observed graph and that of the synthetic data with parameters
estimated via the mean-field approach.
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Why existing parameter estimation methods
fail in practice?

Seed graph choice

=" The seed graph is typically assumed to be the largest clique of the
observed graph. Then random vertices and edges are gradually
added to the network, preserving the average degree of the final
network, to make the size of the network to a fixed value of n

= No formal theoretical guarantees and does not have clear
justification
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Algorithm 1 Parameter estimation via recurrence relation of D(G),).

1: function RECURRENCE-RELATION(n, 7, Gy, D(G,,), €)

2:

R N

Dmin — FD(na 07 r, Gno)a Dmax — FD(na 17 r, Gno)
if Diyin > D(G,,) or Dyax < D(G,,) then

return ‘“no suitable solution for p”
Pmin < O, Pmax < 1
while p,,.x — Pmin > € do

p W, D'« Fp(n,p',r,Gp,)

if D’ < D(G,,) then p,i,, < p’ else ppax < D’
return p.,in
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Our estimation procedure can be summarized follows:

We employ the RECURRENCE-RELATION algorithm for solving graph recurrences of the three graph statistics D,
S5 and ('3, and we identify a set of solutions for p and r.

With G,, ~ DD-model(n,p, T, G, ), we find the tolerance interval of 7~ using the confidence interval of D(G,,) and
C3(Gp).

We look for crossing points of the plots in the figure, and the range of values of p and r where the confidence
intervals meet around the crossing point. We call such a range of values as feasible-box.

Though any point in the feasible-box is a good estimate of p and r, to improve the accuracy, we uniformly sample a
fixed number of points from the box and choose the pair that gives maximum p-value with respect to the number of
automorphisms of the given graph G ..
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