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Abstract

Cognitive Radios are emerging communication systems which efficiently utilise the un-

used licensed radio spectrum called spectral holes. They run Spectrum sensing algo-

rithms to identify these spectral holes. These holes need to be identified at very low SNR

(≤ −20 dB) under multipath fading, unknown channel gains and noise power. Coopera-

tive spectrum sensing which exploits spatial diversity has been found to be particularly

effective in this rather daunting endeavour. However despite many recent studies, several

open issues need to be addressed for such algorithms. In this thesis we provide some novel

cooperative distributed algorithms and study their performance.

We develop an energy efficient detector with low detection delay using decentralized

sequential hypothesis testing. Our algorithm at the Cognitive Radios employ an asyn-

chronous transmission scheme which takes into account the noise at the fusion center.

We have developed a distributed algorithm, DualSPRT, in which Cognitive Radios (sec-

ondary users) sequentially collect the observations, make local decisions and send them to

the fusion center. The fusion center sequentially processes these received local decisions

corrupted by Gaussian noise to arrive at a final decision. Asymptotically, this algorithm is

shown to achieve the performance of the optimal centralized test, which does not consider

fusion center noise. We also theoretically analyse its probability of error and average de-

tection delay. Even though DualSPRT performs asymptotically well, a modification at the

fusion node provides more control over the design of the algorithm parameters which then

performs better at the usual operating probabilities of error in Cognitive Radio systems.

We also analyse the modified algorithm theoretically.

DualSPRT requires full knowledge of channel gains. Thus we extend the algorithm to
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Abstract ii

GLRSPRT where the imperfections in channel gain estimates are taken into account.

We also consider the case when the knowledge about the noise power and channel gain

statistic is not available at the Cognitive Radios. This problem is framed as a universal

sequential hypothesis testing problem. We use easily implementable universal lossless

source codes to propose simple algorithms for such a setup. Asymptotic performance of

the algorithm is presented. A cooperative algorithm is also designed for such a scenario.

Finally, decentralized multihypothesis sequential tests, which are relevant when the

interest is to detect not only the presence of primary users but also their identity among

multiple primary users, are also considered. Using the insight gained from binary hypoth-

esis case, two new algorithms are proposed.
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Chapter 1

Introduction

Presently there is a scarcity of spectrum due to the proliferation of wireless services.

Almost all the usable frequency bands are already allocated to wireless services. Con-

sequently the upcoming standards and wireless systems need to choose among the two

possible ways: use licence-free bands such as Industrial, Scientific and Medical (ISM) band

or Unlicensed National Information Infrastructure (UNII) band; or make use of the unuti-

lized part of the licensed spectrum. The licence-free band seems to be highly occupied

these days and the wireless services in these bands are causing interference to each other.

Hence a feasible solution turns out to be utilising the licensed spectrum without causing

interference to licensed user. This will be possible by the Cognitive Radio technology

([18]).

In order to use the unoccupied licensed spectrum, the Cognitive Radios (secondary

users) sense the spectrum to detect the usage of the channel by the licensed (primary)

users. Due to the inherent time varying fading and shadowing of wireless channels and

strict spectrum sensing requirements for Cognitive Radios ([52]) spectrum sensing has

become one of the main challenges faced by them.

A significant issue in spectrum sensing is the impact of model uncertainties, e.g., the

noise distribution and the noise power at the receiver (because of time varying electro-

magnetic interference in the neighbourhood) and/or the channel gain may not be exactly

known. Because Cognitive Radios (CR) have to detect primary signals at very low SNR

1



Chapter 1. Introduction 2

(e.g., -20 dB), these model uncertainties make the spectrum sensing task particularly un-

reliable. Thus efficient spectrum sensing algorithms which use no knowledge of channel

statistics and/or primary signals are highly desirable.

1.1 Problem

Performance of spectrum sensing algorithms is measured by probability of errors (prob-

ability of miss-detection and probability of false alarm) and/or by sensing time. To

facilitate hypothesis testing formulation, we use H1 for primary transmitting situation

and H0 for primary not transmitting scenario. In the case of fixed sample size primary

signal detector, the strategy is to use Neyman-Pearson criterion ([39]) and the resulting

Likelihood Ratio Test (LRT) minimises the probability of miss-detection, P1(reject H1),

with a constraint on the probability of false-alarm, P0(reject H0). But when the objective

is to minimise the sensing time (average number of observation samples used in testing

the hypothesis) subject to constraints on P0(reject H0) and P1(reject H1), the optimal

test is SPRT (Sequential Probability Ratio Test) ([64]).

It is reasonable to consider the sequential framework for spectrum sensing as it enables

the detector to decide upon the decision quickly. More precisely there are two types of

sequential detection: one can consider detecting when a primary turns ON (or OFF)

(change detection) or just testing the hypothesis whether the primary is ON or OFF.

In sequential hypothesis testing one considers the case where the status of the primary

channel is known to change very slowly, e.g., detecting occupancy of a TV transmission.

Usage of idle TV bands by the Cognitive network is being targeted as the first application

for cognitive radio. In this setup (minimising the expected sensing time under the true

hypothesis H1 or H0 with constraints on P0(reject H0) and P1(reject H1)) Walds’ SPRT

provides the best performance for a single Cognitive Radio.

Multipath fading, shadowing and hidden node problem cause serious problems in spec-

trum sensing. Spatial diversity can mitigate these effects ([62]). Thus Cooperative spec-

trum sensing in which different cognitive radios interact with each other ([61], [2]) is

proposed as an answer to these problems. Also it improves the probability of false alarm
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and the probability of miss-detection. Cooperative spectrum sensing can be either cen-

tralized or distributed ([73]). In the centralized algorithm a central unit gathers sensing

data from the Cognitive Radios and identifies the spectrum usage ([73], [42]). On the

other hand, in the distributed case each secondary user collects observations, makes a lo-

cal decision and sends to a fusion node to make the final decision. Centralized algorithms

provide better performance but also have more communication overhead in transmitting

all the data to the fusion node. In the distributed case, the information that is exchanged

between the secondary users and the fusion node can be a soft decision (summary statis-

tic) or a hard decision ([42]). Soft decisions can give better gains at the fusion center

but also consume higher bandwidth at the control channels (used for sharing information

among secondary users). However hard decisions provide as good a performance as soft

decisions when the number of cooperative users increases ([9]).

We consider sequential hypothesis testing in cooperative (decentralized1) set-up. Feed-

back from the fusion node to the CRs can possibly improve the performance. However

that also requires an extra signalling channel which may not be available and also has its

own cost. Thus in our framework we assume that there is no feedback from the fusion

center to CRs. Also, the channel from CR nodes to the fusion center also experience

fading and receiver noise. Unlike the single node case, optimal tests in the decentralized

framework are not known.

Uncertainty in the received Signal to Noise Ratio (SNR) at the CRs requires a compos-

ite hypothesis testing extension to the decentralized sequential detection problem. Fading

channels between primary and CRs also cause significant degradation in the performance

and hence require serious consideration.

Most of the problems addressed in decentralized framework consider two hypothesis.

However there can be multiple primary users. It is useful to the CR network if it can

identify which primary user is transmitting. Thus, the problem should be extended to

multihypothesis decentralized sequential detection problem.

A more general problem is when no knowledge about primary transmission is available.

1Distributed and decentralized are interchangeable in this thesis.
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This includes SNR uncertainty, fading and all other transmission impairments. This setup

corresponds to nonparametric decentralized sequential detection problem. This is till now

a largely unexplored area.

1.2 Literature Survey

In this section we provide a literature survey of the problems of our interest.

Spectrum sensing

An introduction to Cognitive Radio is provided in [18]. Fundamental issues involving

noise, interference and channel uncertainties are discussed in [50]. For spectrum sensing,

primarily three Signal Processing Techniques are proposed in literature:

• Matched Filter ([49]): This is the optimal detector (in the sense of maximising SNR)

if there is a complete knowledge about the primary signal: demodulation schemes

used by the primary and apriori knowledge of primary user signal. Thus it may

not be possible to use this method in many situations. Under low SNR conditions

Matched Filter requires O(1/SNR) samples for reliable detection.

• Cyclostationary Feature Detection ([70]): This method does not require complete

knowledge about the primary signal. In this method the inherent periodicity of the

mean, autocorrelation, etc in a typical modulated signal is used for detection of a

random signal in the presence of noise. The main advantage of this technique is its

ability to work at very low SNR’s. However its implementation is complex.

• Energy Detector ([49]): When the only known apriori information is noise power

then the optimal detector in Neyman-Pearson framework is Energy Detector. This

is the simplest approach to spectrum sensing. At low SNR an energy detector

requires about O(1/SNR2) samples for reliable detection. A disadvantage of energy

detectors is that to obtain the thresholds used by them for a certain performance
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one needs to know the noise power and fading levels. Also this method does not

work for spread spectrum signals.

Cooperative spectrum sensing is considered in detail in ([2], [61]). An extensive survey

of spectrum sensing methods is provided in [73]. One can use a fixed sample size (one

shot) detectors or sequential detectors ([25], [30], [51], [73]). For one shot detection one

can use any of the three detectors listed above. Sequential detectors can detect change

or test a hypothesis. Sequential hypothesis testing finds out whether the primary is ON

or OFF, while the sequential change point detection detects the point when the primary

turns ON (or OFF). Sequential change detection is well studied (see [4], [30] and the

references therein). Sequential hypothesis testing ([10], [29], [51]) is useful when the

status of the primary channel is known to change very slowly, e.g., detecting occupancy

of a TV channel.

Sequential Detection

Sequential hypothesis testing is preferred over one shot framework when we want to use

minimum number of samples for detection. In CR scenario this translates into better

channel efficiency for the CR system and less interference to the primary. When the

objective is to minimize the expected number of samples with respect to a constraint on

probability of false alarm and probability of miss-detection, then Sequential Probability

Ratio Test ([64], [53]) outperforms any other sequential or fixed sample size test.

In our problem we are also interested in composite hypothesis and nonparametric

versions of sequential hypothesis testing. A survey of sequential composite hypothesis is

provided in [32]. [31] contains a nearly optimal composite sequential hypothesis testing

for exponential family of distributions. Nonparametric sequential tests are provided in

[37].

Decentralized Detection

Decentralized detection can be static or sequential. Static problems are based on fixed

sample size detection. Such problems have been extensively studied (see the surveys [59],
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[62]). Our interest here is in sequential version of decentralized detection. In sequen-

tial decentralized detection framework, optimization needs to be performed jointly over

sensors and fusion center policies as well as over time. Unfortunately, this problem is

intractable for most of the sensor configurations ([36], [63]). Specifically there is no opti-

mal solution available for sensor configurations with no feedback from fusion center and

limited local memory, which is more relevant in practical situations. Recently ([36] and

[14]) proposed asymptotically optimal (order 1 and order 2 respectively) decentralized

sequential hypothesis tests for such systems with full local memory. But these models

do not consider noise at the fusion center and assume a perfect communication channel

between the CR nodes and the fusion center. Also, often asymptotically optimal tests do

not perform well at finite number of observations.

[71] takes into account noisy channels between local nodes and fusion center in decen-

tralized sequential detection framework. But optimality of the tests are not discussed and

the paper is more focussed in finding the best signalling schemes at the local nodes with

the assumption of parallel channels between local nodes and the fusion center. Also fusion

center tests are based on the assumption of perfect knowledge of local node probability

of false alarm and probability of miss-detection. Furthermore uncertainty in the received

SNR at the SUs and fading channels between primary and CR requires a composite hy-

pothesis testing extension to the decentralized sequential detection problem and is not

considered in any of these references.

Multihypothesis Sequential Detection

There has been some work on a single node (centralized) multihypothesis sequential testing

problem both in the Bayesian ([13]) as well as non-Bayesian ([15], [57], [55]) framework. In

[56] decentralized multihypothesis sequential testing problem is considered. The authors

use a test at each local node, which is provided in [57] and at the fusion center they use

a test loosely based on a method in [55].



Chapter 1. Introduction 7

Censoring in distributed detction

The idea of censoring, in distributed detection or cooperative spectrum sensing, is that

each sensor or CR sends only “informative” test statistics to the FC, and leaves those

deemed “uninformative” untransmitted ([3], [43]). Censoring facilitates saving energy in

battery operated cognitive radio terminals and sensor nodes because the transmitter needs

to be used less frequently. The problem is to decide what is ”informative” and what is

not. The boundaries of the no-send region for the sensors are optimized under constraints

on data rate, average network energy consumption and false alarm probabilities. Another

possible energy saving scheme is sleeping, shutting off the sensor completely whenever the

information content of its next few observations is likely to be small, by taking advantage

of past observations and a priori knowledge about the stochastic processes of the observa-

tions. [69] considers a combination of censoring and sleeping with the goal of maximizing

the mutual information between the state of signal occupancy and the decision of the

FC. [35] proposes a censoring scheme in cyclostationarity-based cooperative sensing. In

sequential distributed detection framework, censoring is employed in [25], [71] and [72]

and in these works, transmission from SU happens only when the respective sequential

test at SU makes a decision.

Universal Hypothesis Testing

Recently hypothesis testing when there is partial or no information about the distributions

under H0 or H1 has been studied. For finite alphabets [19] provides an optimal fixed

sample size universal test. Error exponents for these tests are studied in [33]. In [60]

mismatched divergence is used to study the problem.

The initial work on statistical inference with the help of universal source codes, started

in [44], [75], which study classification of finite alphabet sources using universal coding

in fixed sample size setup. [23] considers the problem in the sequential framework. [47]

considers both discrete and continuous alphabet for a fixed sample size. For continuous

alphabet this paper considers partitions of the real alphabet and proves that with a bound

on Type I error, Type II error tends to zero as the sample size goes to infinity.
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1.3 Contribution of Thesis

We consider the sequential hypothesis testing framework in the cooperative setup. SPRT

is used at each local node and again at the fusion center. The local nodes transmit

their decisions to the fusion node. We call this algorithm DualSPRT. Unlike the previous

works on cooperative spectrum sensing using sequential testing ([29], [51]) we analyse

this algorithm theoretically also. Asymptotic properties of DualSPRT are studied and

it is found that as thresholds increase, performance of the algorithm approaches the

optimal centralized sequential solution, which does not consider fusion center noise. In

addition, we generalize this algorithm to include channel gain uncertainty. Furthermore,

we consider the receiver noise at the fusion node and use physical layer fusion to reduce

the transmission time of the decisions by the local nodes to the fusion node.

Later we improve over DualSPRT. Furthermore we introduce a new way of quantizing

SPRT decisions of local nodes. We call this algorithm SPRT-CSPRT. We extend this

algorithm to cover SNR uncertainties and fading channels. We also study its performance

theoretically. We have seen via simulations that our algorithm works better than the

algorithm in [36] and almost as well as the algorithm in [14] even when the fusion center

noise is not considered and the Multiple Access Channel (MAC) layer transmission delays

are ignored in [14] and [36].

We also consider sequential universal source coding framework for binary hypothesis

testing with continuous alphabets. This framework captures SNR uncertainty and fading

scenarios. Our algorithms also find applications in intruder detection in sensor networks.

We prove almost sure finiteness of the stopping time. Asymptotic properties of probability

of error is provided and moment convergence of expected stopping times is also studied.

We propose a sequential hypothesis test using Lempel-Ziv (LZ) ([76]) codes and compare

it with the composite hypothesis tests and optimal sequential tests. Another universal

test using Krichevsky-Tofimov (KT) estimator with Arithmetic Encoder ([12]) is also

studied. We compare both of these tests for different scenarios and find the later algorithm

outperforms the former. We also extend our algorithm to cooperative spectrum sensing

setup. To the best of our knowledge, previous work in cooperative framework ([2]) does
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not consider the universal source coding setup.

We also provide two simple algorithms for multihypothesis decentralized sequential

detection. Their performance is compared via simulations. Theoretical analysis of one

algorithm is provided.

1.4 Organization of Thesis

This thesis is organized as follows. In Chapter 2 we start with an introduction to Cogni-

tive Radio. Then the problem of spectrum sensing is elaborated and the corresponding

challenges are presented.

In Chapter 3 we present our basic model for spectrum sensing and then study Dual-

SPRT algorithm. Next, theoretical performance of DualSPRT is provided. Asymptotic

optimality of DudalSPRT is studied then. Later we extend DualSPRT to GLRSPRT to

consider the effect of fading and SNR uncertainty.

In Chapter 4 we improve over DualSPRT and call the modified algorithm as SPRT-

CSPRT. Its performance is compared with existing asymptotically optimal decentralized

sequential algorithms. Then the algorithm is extended to the unknown SNR case. Theo-

retical analysis of SPRT-CSPRT is provided at the end of this chapter.

Chapter 5 covers universal sequential hypothesis testing using universal source coding.

For finite alphabet case a general test and its properties are presented. Theoretical study

of the proposed test is also provided. Then it is extended to continuous alphabet case

with uniform quantization. Later two universal tests using easily implementable universal

losseless codes are proposed and named as LZSLRT (Lempel-Ziv Sequential Likelihood

Ratio Test) and KTSLRT (Krichevsky-Trofimov Sequential Likelihood Ratio Test). These

tests are compared via simulations for different scenarios. The last section develops a

decentralized algorithm.

In Chapter 6 two new multihypothesis decentralized sequential algorithms are devel-

oped. They are shown to perform better than the existing schemes. Theoretical analysis

of one of them is also provided.

Chapter 7 concludes the thesis and presents future directions to explore.



Chapter 2

Introduction to Cognitive Radio

The main aspects in current spectrum policies which lead to spectrum scarcity are fixed

allocation of the spectrum, very little sharing and rigid requirements on using methodolo-

gies. Dynamic Spectrum Access (DSA) covers a broad range of reformations in spectrum

access to address these issues. Different techniques for DSA are illustrated in Figure 2.1

([74]). The first classification, Dynamic Exclusive Use Model, retains the structure of the

Dynamic Spectrum Access

Open Sharing Model
(Spectrum Commons Model) Hierarchical Access ModelDynamic Exclusive Use Model

Spectrum Property
Rights

Dynamic Spectrum
Allocation

Spectrum Underlay
(Ultra Wide Band)

Spectrum Overlay
(Opportunistic

Spectrum Access)

Cognitive Radio

Figure 2.1: A taxonomy of dynamic spectrum access ([74])

current spectrum regulation policy, i.e., licence for exclusive use. Flexibility in allocation

and spectrum usage are the key factors in this model. Spectrum Property Rights allow

10
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licensees to sell and trade spectrum. This allows present economy and market to deter-

mine the most profitable use of spectrum. Dynamic Spectrum Allocation allows dynamic

spectrum assignment to different services by exploiting spatial and temporal traffic statis-

tics, i.e., in a given region and at a given time, spectrum is allocated to certain services

for exclusive use. Open sharing model is based upon the idea of unlicensed ISM bands:

open sharing among peer users.

Hierarchical Access Model, which is adapted in this thesis, is based on creating a hier-

archical structure of the primary users (PU) and the secondary users (SU). The essential

idea here is to give access to the licensed spectrum, to the secondary users provided the

interference perceived by primary users (licensees) is limited. Two techniques here are

Spectrum Underlay and Spectrum Overlay. In Spectrum Underlay approach SU’s trans-

mit power is below the noise floor of the PUs, with the assumption that PUs are present

all the time. Here the idea is to spread transmitted signals over a wide frequency band

(UWB) to achieve high data rate with low transmission power. This approach does not

use any detection mechanisms. Spectrum Overlay approach, in contrast to Spectrum

Underlay, relies on when and where to transmit and put little restrictions on transmit

power. The algorithms in Spectrum Overlay method detect the spectrum availability and

use this knowledge for SUs transmission. Note that in this thesis we aim at developing

algorithms for Spectrum Overlay approach in Hierarchical Access Model.

Cognitive Radio is an autonomous reconfigurable Software Defined Radio platform

(SDR)- a multiband system supporting multiple air interfaces and reconfigurable through

software, which can learn from and adapt to the working scenario. They can exploit

the spectrum availability in various dimensions. Spectrum can be shared in time, space,

frequency, power or combination of the above. Spectrum availability arising in these

domains is called spectrum holes or white spaces. Even if the white spaces are not

available, a Cognitive Radio can be permitted to use the spectrum with a power level

that is not enough to breach the interference thresholds of primary users, in any of time,

frequency or space domains. This type of spectrum availability corresponds to grey spaces.

The Basic Cognitive Engine is illustrate in Figure 2.2 ([18]). Cognitive Cycle starts
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Radio Enviornment
(Outside World)

Transmit power-
control, and
spectrum
management

Radio
Scene
Analysis

Channel-state
estimation,
and predictive
modelling

Action:
Transmitted

Signal
RF
stimuli

Spectrum holes,
Noise-floor statistics,
Traffic statistics

Interference
Temperature

Quantized
Channel-Capacity

CR Transmitter CR Receiver

Figure 2.2: Cognitive Cycle

with the passive sensing of RF environment and can be thought of consisting of three

main cognitive tasks:

1. Radio Scene Analysis: This involves the detection of spectrum holes and estima-

tion of interference temperature. Interference temperature at a receiving antenna

provides an accurate measure for the acceptable level of RF interference in the fre-

quency band of interest. If interference temperature is not exceeded, that band could

be made available to unserviced users and interference-temperature limit serves as

a cap, placed on potential RF energy that could be used on that band.

2. Channel Identification: This involves estimation of Channel State Information

(CSI) and prediction of channel capacity for use by the cognitive transmitter.

3. Spectrum Management: This involves the Transmit Power Control and alloca-

tion of spectrum holes to different secondary users. This also involves appropriate

choice of modulation strategy among the cognitive users to achieve reliable commu-

nication. OFDM as a modulation strategy commends itself to cognitive radio due

to its inherent flexibility and computational efficiency.
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As can be seen, Spectrum Sensing is a critical task of the Cognitive Cycle.

2.1 Spectrum Sensing

Geo-location method (updating a database with information of PUs and transmitting this

information) was considered first for getting spectrum availability in the first CR standard

IEEE 802.22 and was suitable for registered TV bands, but its cost and operational

overhead prevent its wide use in the opportunistic access to occasional “white spaces” in

the spectrum. Spectrum sensing techniques are proposed as an alternate solution.

From the discussion in the last section, it can be seen that the primary objectives of

Spectrum sensing are the following:

1. CR users should not cause harmful interference to PUs by either switching to an

available band or limiting its interference with PUs at an acceptable level

2. CR users should efficiently identify and exploit the spectrum holes for required

throughput and quality-of-service (QoS). Thus, the detection performance in spec-

trum sensing is crucial to the performance of both primary and CR networks.

Detection performance is evaluated through the following metrics: Probability of False

Alarm, which denotes the probability that the CR detects that the spectrum is occupied

when it is actually free, Probability of Miss-detection, which denotes the probability of

declaring that the spectrum is free by CR when the spectrum is actually in use by the

PU, and Expected Detection Delay, which corresponds to the average number of samples

the detector takes to make a decision. A miss in detection leads to interference to primary

and a false alarm will reduce spectral efficiency.

Issues like multipath fading, shadowing, and the receiver uncertainty problem largely

affect the detection performance. In addition spectral holes need to be detected at very

low SNR (≤ −20 dB). This problem can be reduced by using cooperative sensing, which

exploits spatial diversity in the observations of spatially located CR users. The key

factors in cooperative spectrum sensing are the cooperation method, cooperative gain
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and cooperation overhead. Cooperative gain accounts for improved detection performance

(more accurate decision), relaxed receiver sensitivity (ability to detect weak signals) and

reduction in sensing time. As shown in Figure 2.3, degradation in performance due to

dBm

PU Transmit Power Sensitivity Level

Loss due to Path
Loss

Loss due to
Multipath fading
and Shadowing

Improvement with
Cooperation

Threshold with Cooperation

Noise Floor Threshold without Cooperation

Figure 2.3: Improvement of sensitivity with cooperative sensing

multipath fading and shadowing can be overcome by cooperative sensing such that the

sensitivity of receiver can be approximately set to the same level of nominal path loss

without increasing the implementation cost of CR devices ([2]). Usually cooperative

sensing is comprised of the following three steps: 1) local sensing, 2) reporting to fusion

center (via control channels) and 3) data fusion.

Cooperative Spectrum sensing also faces challenges. For SUs there should either exist

dedicated spectrum for control channels, which has not been allocated by any regulatory

bodies so far, or the signalling should also be exchanged using opportunistic spectrum

access thus reducing the reliability of such a channel. In addition the amount of required

overhead for cooperative sensing might be of concern.

Cooperative spectrum sensing is adopted in IEEE 802.22 whereby sensing is performed

in two stages. First, a fast algorithm, is used by all Customer Premises Equipments

(CPEs), where the results of this are aggregated at the Base Station (BS). The BS then

decides upon the need for a finer sensing period.
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2.1.1 Implementation of Spectrum Sensing Algorithms

Matched filter technique and cyclostationary method mentioned in Section 1.2 are coher-

ent methods so that their implementation requires some knowledge about the primary

transmission. This may not always be available. Thus, this thesis is mainly focussed on

non-coherent spectrum sensing methods. In the algorithms proposed later, energy of the

received signal is calculated at the CR receiver over a time frame and thus these energy

samples are used for further processing. This is depicted as a block diagram in Figure

2.4 for a CR ([1], [8]) and the energy samples are denoted as Ei at time epoch i. In a

cooperative setup used in this thesis, there will be L ≥ 1 such CR receivers. The same set

of computations are carried out in all the CRs to calculate the respective energy samples.

Each CR will process its energy samples sequentially and send its local decisions about

the spectrum usage to the FC to make a final conclusion.

Energy
Calculator

LNA

Ei

CR

e(t)
Tunable
Notch Filter

Mixer

VCO

PLL

Channel
Selection Filter

AGC

Frequency
Down Converter

r(t)

Figure 2.4: Block diagram of the receiver implementation at a CR

The RF signal received at a CR node first passes through a Low Noise Amplifier (LNA)

which minimizes the noise component of the RF signal received with the amplification

of the signal part. This signal is then passed through a Tunable Notch Filter. This is

not there at a primary receiver. In a CR receiver it is needed for the following purpose.

The requirement of CRs to detect weak signals translates to a large dynamic range of an

Analog to Digital Converter (ADC). Since a CR system needs to scan a relatively wider

bandwidth in contrast to the normal receivers, multi-GHz ADC’s must be used. A large

dynamic range along with a multi-GHz bandwidth is difficult to implement in practice
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and hence the dynamic range of the signals should be reduced before A/D conversion.

This can be accomplished by filtering strong signals and thus RF front-end design needs a

tunable notch analog processing block. This is followed by a mixer which down converts

the RF signal to the baseband signal. The mixer uses a Voltage Control Oscillator (VCO)

which provides a signal at a particular frequency. A Phase Locked Loop (PLL) guarantees

that the VCO output signal is locked to a particular frequency. The mixer is followed by

a Channel Selection Filter which rejects the signals from adjacent channels. The most

commonly used Superheterodyne receiver uses a bandpass filter. Finally an Automatic

Gain Controller (AGC) is used to maintain the power level of the signal constant over a

wide range. Its output is used to obtain the energy signals.

Figure 2.5 and Figure 2.6 show two separate realizations of computation of an energy

sample ([8]). Although these two types are basically the same by Parsevals theorem, the

second type is preferred. In Figure 2.5, for a given signal bandwidth, a pre-filter matched

to the bandwidth of the signal needs to be applied. This need makes this implementation

quite inflexible. An alternative approach is to use squared magnitude of the FFT, as

shown in Figure 2.6. Here, by selecting properly the M frequency bins in the periodogram,

any arbitrary bandwidth of the modulated signal can be processed. Also this technique

provides two more ways to improve the signal detection. The frequency resolution of the

FFT increases with the number of points K (equivalent to changing the analog pre-filter

which is relatively difficult) and increasing N , the number of samples averaged to obtain

one energy sample reduces the effect of noise.

Pre-filter
ADC

Squarer∣∣∣
∣∣∣
2 Average

N Samples

e(t) Ei

Figure 2.5: Time domain energy calculation

The algorithms in the rest of the thesis are proposed and explained assuming the ob-

servations and test statistic to be real. However they can be easily extended to complex

observations (I and Q components) as well by forming test statistic as a vector. But when

the test statistic is taken as real, perfect carrier phase and frequency offset synchronization
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Squarer∣∣∣
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e(t) Ei
ADC K-point FFT

Figure 2.6: Frequency domain energy calculation

are implicitly assumed. However by using energy samples as in Figure 2.4, these assump-

tions can be relaxed. From [41, Chapter 4], for one or two dimensional constellations the

signal after frequency down conversion can be written in complex domain representation

as e(t) = 2r+(t)e−j2πf0t, where r+(t) = 1
2
r(t) + j

2
r̂(t) with r̂(t) as the Hilbert transform of

r(t) and f0 as the frequency of mixer and fc as the carrier frequency of r(t). Assume a

phase synchronization error φd and a frequency synchronization error fd (fc = f0 + fd),

then e(t) = 2r+(t)e−j(2πfct−2πfdt+φd). With the use of energy samples, which are calculated

from the absolute value of e(t), it is clear that the system will not get affected by phase

and frequency synchronization errors.

Another issue, symbol timing mismatch which is common in communication receivers,

will not affect our setup in Figure 2.4. In case of normal communication receivers, the

baseband signal e(t), after matched filtering, must be sampled once per symbol interval

to recover the transmitted information. In our setup the intention is not to decode the

symbol perfectly, but to calculate the energy in the bandwidth under consideration by

observing e(t) over a time frame and do not need to sample at symbol time, and thus

will not cause any serious issues. But this will surely affect the matched filter spectrum

sensing technique. In that technique, when the received signal r(t) =
∑

n anp(t− ε− nT )

is sampled after matched filtering by the pulse p(t) (required to be known for matched

filtering) the samples r(kT ) will be correlated to each other unless ε, the symbol timing

synchronization error is zero. However, since the CR receivers do not use any training

mechanisms ε will not be zero.

Although the algorithms in Chapter 3, 4 and 6 do not assume the input observations to

be i.i.d., their theoretical analysis is based on i.i.d. assumption. But when energy samples

are not used and observations are correlated, it seems that the theoretical performance is

difficult to derive.



Chapter 2. Introduction to Cognitive Radio 18

2.2 Summary

This chapter introduced the Cognitive Radio architecture and presented the challenges

posed by spectrum sensing in the CR setup. Rest of this thesis provides algorithms for

cooperative spectrum sensing.



Chapter 3

Decentralized Sequential Tests:

DualSPRT

In this chapter we propose DualSPRT algorithm for decentralized sequential detection.

We study its properties and extend the algorithm to different scenarios which are relevant

to spectrum sensing.

Section 3.1 describes the system model and section 3.2 presents DualSPRT. Section

3.3 analysis its performance theoretically and compares with simulations. Section 3.4

provides asymptotic optimality of DualSPRT. Section 3.5 extends the results to unknown

SNR and channel gain. Section 3.6 concludes the chapter.

3.1 System Model

We consider a Cognitive Radio system with one primary transmitter and L Secondary

Users (Figure 3.1). The L nodes sense the channel to detect the spectral holes. The

decisions made by the Secondary Users are transmitted to a fusion node via a Multiple

Access Channel (MAC) for it to make a final decision.

Let Xk,l be the observation made at Secondary User l at time k. The {Xk,l, k ≥ 1}
are independent and identically distributed (i.i.d.). It is assumed that the observations

are independent across Cognitive Radios. Based on {Xn,l, n ≤ k} the Secondary User l

19
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transmits Yk,l to the fusion node. It is assumed that the secondary nodes are synchronised

so that the fusion node receives Yk =
∑L

l=1 Yk,l + Zk, where {Zk} is i.i.d. receiver noise.

The fusion center uses {Yk} and makes a decision. The observations {Xk,l} depend on

whether the primary is transmitting (Hypothesis H1) or not (Hypothesis H0) as

Xk,l =





Nk,l, k = 1, 2, . . . , under H0

hlSk +Nk,l, k = 1, 2, . . . , under H1

(3.1)

where hl is the channel gain of the lth user, Sk is the primary signal and Nk,l is the

observation noise at the lth user at time k. We assume {Nk,l, k ≥ 1} are i.i.d. Let N be

the time to decide on the hypothesis by the fusion node. We assume that N is much less

than the coherence time of the channel so that the slow fading assumption is valid. This

means that hl is random but remains constant during the spectrum sensing duration. The

model explained above is illustrated in Figure 3.1. Note that Xk,l can be taken as the

energy sample Ek at CR l in Figure 2.4.

+h1

Sk

Nk,1

+

Nk,2

+

Nk,L

.

.

.

h2

Xk,1

Xk,2

Xk,L

hL

Processing Yk,1

Primary
User Processing Yk,2

Processing Yk,L

.

.

.

Secondary
Fusion
Center

Figure 3.1: Model for DualSPRT

The general problem is to develop a distributed algorithm in the above setup which
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solves the problem:

minEDD
∆
= E[N |Hi]

subject to P1(Reject H1) ≤ α1 and P0(Reject H0) ≤ α0, (3.2)

where Hi is the true hypothesis, i = {0, 1}, and 0 ≤ α0, α1 ≤ 1. We will separately

consider E[N |H1] and E[N |H0]. It is well known that for a single node case (L = 1)

Wald’s SPRT performs optimally in terms of reducing E[N |H1] and E[N |H0] for given

probability of errors. Motivated by the optimality of SPRT for a single node, we propose

using DualSPRT in the next section and study its performance.

Throughout this thesis, Ei denotes expectation and Pi denotes probability distribution

under hypothesis Hi. We use PMD for P1(reject H1) and PFA for P0(reject H0). In case of

EDD, hypothesis under consideration can be understood from the context. Table 3.1 lists

the basic notations used in the algorithm. Other notations used for analysis are defined

when it appears for the first time.

3.2 DualSPRT algorithm

To explain the setup and analysis we start with the simple case, where the channel

gains, hl=1 for all l′s. We will consider fading in the next section. DualSPRT is as

follows:

1. Secondary node, l, runs SPRT algorithm,

W0,l = 0

Wk,l = Wk−1,l + log [f1,l (Xk,l) /f0,l (Xk,l )] , k ≥ 1 (3.3)

where f1,l is the density of Xk,l under H1 and f0,l is the density of Xk,l under H0

(w.r.t. a common distribution).

2. Secondary node l transmits a constant b1 at time k if Wk,l ≥ γ1 or transmits b0
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Notation Meaning

L Number of CRs

Xk,l Observation at CR l at time k

Yk,l Transmitted value from SU l to FC at time k.

Yk,l ∈ {0, b1, b0}
hl Channel gain of the lth CR

Nk,l Observation noise at CR l at time k

N Stopping time of the algorithm

Wk,l SPRT sum at CR l at time k

Fk SPRT sum at FC at time k

Zk FC MAC noise at time k

Yk FC observation at time k

γ1, γ0 Thresholds at CR

β1, β0 Thresholds at FC

Table 3.1: List of important notations used in Chapter 3, 4 and 5

when Wk,l ≤ −γ0, i.e.,

Yk,l = b1 I{Wk,l ≥ γ1}+ b0 I{Wk,l ≤ −γ0}

where γ0, γ1 > 0 and I{A} denotes the indicator function of set A. Parameters

b1, b0, γ1, γ0 are chosen appropriately.

3. Physical layer fusion is used at the Fusion Centre, i.e., Yk =
∑L

l=1 Yk,l + Zk, where

{Zk} is the i.i.d. noise at the fusion node.

4. Finally, Fusion center runs SPRT:

Fk = Fk−1 + log [gµ1 (Yk) /g−µ0 (Yk )] , F0 = 0, µ1, µ0 > 0, (3.4)

where g−µ0 is the density of Zk − µ0 and gµ1 is the density of Zk + µ1, µ0 and µ1
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being positive constants appropriately chosen.

5. The fusion center decides about the hypothesis at time N where

N = inf{k : Fk ≥ β1 or Fk ≤ −β0}

and β0, β1 > 0. The decision at time N is H1 if FN ≥ β1, otherwise H0.

Performance of this algorithm depends on (γ1, γ0, β1, β0, b1, b0, µ1, µ0). Any prior infor-

mation available about H0 or H1 can be used to decide constants. Also we choose these

parameters such that the probability of false alarm/miss-detection, Pfa/Pmd at local nodes

is higher than PFA/PMD. A good set of parameters for given SNR values can be obtained

from known results of SPRT.

Deciding at local nodes and transmitting them to the fusion node reduces the trans-

mission rate and transmit energy used by the local nodes in communication with the

fusion node. Also, physical layer fusion in Step 3 reduces transmission time, but requires

synchronisation of different local nodes. If synchronisation is not possible, then some

other MAC algorithm, e.g., TDMA can be used.

Using sequential tests at SUs and at FC (without physical layer synchronization and

fusion receiver noise) has been shown to perform well in ([29], [51]). In the next Section

we analyse the performance under our setup.

3.3 Performance Analysis

We first provide the analysis for the mean detection delay EDD and then for PMD.

At node l, let

δi,l = Ei

[
log

f1,l(Xk,l)

f0,l(Xk,l)

]
, ρ2

i,l = V arHi

[
log

f1,l(Xk,l)

f0,l(Xk,l)

]
.

We will assume δi,l finite throughout this paper. Sometimes we will also need ρ2
i,l < ∞.

When the true hypothesis is H1, by Jensen’s Inequality, δ1,l > 0. At secondary node l,

SPRT {Wk,l, k ≥ 0} is a random walk with expected drift given by δ1,l.
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Let

Nl = inf{k : Wk,l /∈ (−γ0, γ1)}, N1
l = inf{k : Wk,l > γ1} and N0

l = inf{k : Wk,l < −γ0}.

Then Nl = min{N0
l , N

1
l }. Also let N0 = inf{k : Fk ≤ −β0} and N1 = inf{k : Fk ≥ β1}.

Then stopping time of DualSPRT, N = min(N1, N0).

In order to have PFA = PMD, we choose γ1 = γ0 = γ, β1 = β0 = β, b1 = −b0 = b and

µ1 = µ0 = µ. Of course PFA and PMD can be taken different by appropriately choosing

γ1, γ0, β1 and β0 and the analysis will carry over.

3.3.1 EDD Analysis

At the fusion node Fk crosses β under H1 when a sufficient number of local nodes transmit

b1. The dominant event occurs when the number of local nodes transmitting are such that

the mean drift of the random walk Fk will just have turned positive. In the following we

find the mean time to this event and then the time to cross β after this. This idea of

EDD calculation is illustrated in Figure 3.2. The EDD analysis is same under hypothesis

H0 and H1. Hence we provide the analysis for H1.

The following lemmas provide justification for considering only the events {N i
l } and

{N i} for analysis of EDD = E[N |Hi].

Lemma 3.1. For i = 0, 1, Pi(Nl = N i
l )→ 1 as γ →∞ and Pi(N = N i)→ 1 as γ →∞

and β →∞.

Proof: From random walk results ([17, Chapter II]) we know that if a random walk

has negative drift then its maximum is finite with probability one. This implies that

Pi(N
j
l < ∞) → 0 as γ → ∞ for i 6= j but Pi(N

i
l < ∞) = 1 for any γ < ∞. Thus

Pi(Nl = N i
l )→ 1 as γ →∞. This also implies that as γ →∞, the drift of Fk is positive

for H1 and negative for H0. Therefore, Pi(N = N i)→ 1 as γ →∞ and β →∞.

Lemma 3.2. Under Hi, i = 0, 1 and j 6= i,

(a) |Nl −N i
l | → 0 a.s. as γ →∞ and limγ→∞

Nl
γ

= limγ→∞
N i
l

γ
= 1

D(fi,l||fj,l) a.s. and in

L1.



Chapter 3. Decentralized Sequential Tests: DualSPRT 25

Wk,l
γ

−γ
b

b

3b
2b

β

−β

LLR Sum at FC under H1

Fk

t1 t2 t3(1 node transmits) (l∗ nodes transmit)

TimeN 1
l

Yk,l

E1[Yk]

N 1

Ftl∗−1

tl∗

LLR Sum at local node l

under H1

Transmission from
local node l

Mean of the received
signal at FC

Figure 3.2: DualSPRT EDD theoretical analysis

(b) |N −N i| → 0 a.s. and lim N
β

= lim N i

β
a.s. and in L1, as γ →∞ and β →∞.

Proof: Under H0,

N0
l I{N0

l < N1
l } ≤ Nl ≤ N0

l , (3.5)

and since P0[N0
l < N1

l ]→ 1 as γ →∞, |N0
l −Nl| → 0 a.s. as γ →∞. Also from Random

Walk results ([17, p. 83]), N0
l /γ → 1/D(f0,l||f1,l) a.s. and E[N0

l ]/γ → 1/D(f0,l||f1,l).

Thus we also obtain Nl/γ → 1/D(f0,l||f1,l) a.s. and in L1. Similarly the corresponding

results hold for N and N0 as γ and β →∞. (3.5) holds in the expected sense also.

Thus when γ is large, we can approximate E1[Nl] by γD(f1,l||f0,l). Also under H1, by
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central limit theorem for the first passage time N1
l (Theorem 5.1, Chapter III in [17]),

N1
l ∼ N (

γ

δ1,l

,
ρ2

1,l γ

δ3
1,l

). (3.6)

From Lemma 3.2, we can use this result for Nl also. Similarly we can obtain the results

under H0 and at the fusion node. Let δji,FC be the mean drift of the fusion center SPRT

Fk, under Hi, when j local nodes are transmitting. Let tj be the point at which the drift

of Fk changes from δj−1
i,FC to δji,FC and let F̄j = E[Ftj−1], the mean value of Fk just before

transition epoch tj. The following lemma holds.

Lemma 3.3. Under Hi, i = 0, 1, as γ →∞,

Pi(Decision at time tk is Hi and tk is the kth order statistics of N i
1, N

i
2, . . . , N

i
L)→ 1.

Proof: From Lemma 3.1,

Pi(Decision at time tk is Hi and tk is the kth order statistics of N i
1, N

i
2, . . . , N

i
L)

≥ Pi(N
i
l < N j

l , j 6= i, l = 1, . . . , L)→ 1, as γ →∞.
We use Lemma 3.1-3.3 and equation (3.6) in the following to obtain an approximation

for EDD when γ and β are large. Large γ and β are needed for small probability of error.

Then we can assume that the local nodes are making correct decisions.

Let

l∗ = min{j : δj1,FC > 0 and
β − F̄j
δj1,FC

< E[tj+1]− E[tj]}.

F̄j can be iteratively calculated as

F̄j = F̄j−1 + δj1,FC (E[tj]− E[tj−1]), F̄0 = 0. (3.7)

Note that δj1,FC (0 ≤ j ≤ L) is assumed to be jb and tj is the jth order statistics of {N1
l , 0 ≤

l ≤ L}. The Gaussian approximation (3.6) can be used to calculate the expected value of

the order statistics using the method given in [5]. This implies that E[tj]s and hence F̄js

are available offline. By using these values EDD (≈ E1(N1)) can be approximated as

EDD ≈ E[tl∗ ] +
β − F̄l∗
δl
∗

1,FC

, (3.8)

where the first term on R.H.S. is the mean time till the drift becomes positive at the fusion

node while the second term indicates the mean time for Fk to cross β from tl∗ onward.
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3.3.2 PMD/PFA Analysis

We provide analysis underH1. PFA analysis is same as that of PMD analysis with necessary

changes. When the thresholds at local nodes are reasonably large, according to Lemma

3.3, with a large probability local nodes are making the right decisions and tk can be

taken as the order statistics assuming that all local nodes make the right decisions. Then

PMD at the fusion node, when H1 is the true hypothesis, is given by,

PMD = P1(accept H0) = P1(N0 < N1).

It can be easily shown that P1(N1 < ∞) = 1 for any β > 0. Also P1(N0 < ∞) → 0 as

β → ∞. We should decide the different thresholds such that P1(N1 < t1) is small for

reasonable performance. Therefore

PMD = P1(N0 < N1) ≥ P1(N0 < t1, N
1 > t1) ≈ P1(N0 < t1). (3.9)

Also,

P1(N0 < N1) ≤ P1(N0 <∞) = P1(N0 < t1) + P1(t1 ≤ N0 < t2) + P1(t2 ≤ N0 < t3) + . . .

(3.10)

One expects that the first term in the right hand side should be the dominant term. This

is because, from Lemma 3.3, after t1, the drift of Fk will be most likely more positive

than before t1 (if PMD at local nodes are reasonably small) and cause fewer errors if the

fusion center threshold is chosen appropriately. We have verified this from simulations

also. Hence we focus on the first term. Combining this fact with (3.9), P1(N0 < t1) will

be a good approximation for P1(reject H1).

Let ξk = log [gµ1 (Yk) /g−µ0 (Yk)]. Then Fk = ξ1 + ξ2 + ... + ξk and if we assume that

ξk before t1, has mean zero and has distribution symmetric about zero (e.g., ∼ N (0, σ2))

then,

P1(reject H1 before t1)

≈
∞∑

k=1

P1

[
{Fk < −β} ∩k−1

n=1 {Fn > −β}
∣∣t1 > k

]
P [t1 > k]
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=
∞∑

k=1

(
P1

[
Fk < −β| ∩k−1

n=1 {Fn > −β}
]
P1

[
∩k−1
n=1 {Fn > −β}

])(
1− Φt1(k)

)

(A)
=

∞∑

k=1

(
P1[Fk < −β|Fk−1 > −β]P1[ inf

1≤n≤k−1
Fn > −β]

)(
1− Φt1(k)

)

(B)

≥
∞∑

k=1

(∫ ∞

c=0

P1[ξk < −c]fFk−1
{−β + c} dc

)(
1− 2P1[Fk−1 ≤ −β]

)(
1− Φt1(k)

)
,

where Φt1 is the Cumulative Distribution Function of t1. Since we are considering only

{Fk, k ≤ t1}, we remove the dependencies on t1. In the above equations (A) is because of

the Markov property of the random walk and (B) is due to the following lemma.

Lemma 3.4. If ξ1 has mean zero and distribution symmetric about zero,

P
[

inf
1≤n≤k−1

Fn > −θ
]
≥ 1− 2P

[
Fk−1 ≤ −θ

]
.

Proof: For random walk Fk with mean zero and symmetric distribution, [7, p. 525],

P
[

sup
1≤n≤k−1

Fn ≥ θ
]
≤ 2P

[
Fk−1 ≥ θ

]
. (3.11)

This implies

P
[

sup
1≤n≤k−1

(−Fn) ≥ θ
]
≤ 2P

[
(−Fk−1) ≥ θ

]
.

Therefore,

P
[

inf
1≤n≤k−1

Fn ≤ −θ
]
≤ 2P

[
Fk−1 ≤ −θ

]

and hence

P
[

inf
1≤n≤k−1

Fn > −θ
]
≥ 1− 2P

[
Fk−1 ≤ −θ

]
.

Similarly we can write an upper bound by replacing P [∩k−1
n=1{Fn > −θ}] with P [Fk−1 >

−θ]. We can make the lower bound tighter if we do the same analysis for the random

walk between t1 and t2 with appropriate changes and add to the above bounds.

3.3.3 Example I

We apply the DualSPRT on the following example and compare the EDD and PFA/PMD

via analysis provided above with the simulation results. We assume that f0 and f1 are
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Gaussian with different means. This model is relevant when the noise and interference

are log-normally distributed ([61]), and when Xk,l is the sum of energy of a large number

of observations at the secondary nodes at a low SNR.

Parameters used for simulation are as follows: There are 5 secondary nodes, L = 5,

f0 ∼ N (0, 1) and f1 ∼ N (1, 1), where N (a, b) denotes Gaussian distribution with mean a

and variance b. Also f0 = f0,l and f1 = f1,l for 1 ≤ l ≤ L, and b = 1. The PMD/PFA and

the corresponding EDD are provided in Table 3.2. The parameters are chosen to provide

good performance for the given PMD/PFA. The table also contains the results obtained

via analysis. We see a good match in theory and simulations.

PMDSim. PMDAnal. EDDSim. EDDAnal.

0.00125 0.0012 15.6716 16.4216

0.01610 0.0129 13.928 12.6913

(a) Under H1

PFASim. PFAAnal. EDDSim. EDDAnal.

0.0613 0.0497 11.803 10.583

0.0031 0.0027 15.1766 14.830

(b) Under H0

Table 3.2: DualSPRT: Comparison of EDD and PMD/PFA obtained via analysis (lower

bound on the dominating term) and simulation.

The above example is for the case when Xk,l have the same distribution for different

l under the hypothesis H0 and H1. However in practice the Xk,l for different local nodes

l will often be different because their receiver noise can have different variances and/or

the path losses from the primary transmitter to the secondary nodes can be different.

An example is provided here to illustrate the application of the above analysis to such a

scenario. Now the order statistics tl∗ in (3.8) needs to be appropriately computed.
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3.3.4 Example II

There are five secondary nodes with primary to secondary channel gain being 0, -1.5, -2.5,

-4 and -6 dB respectively (corresponding post change means are 1, 0.84, 0.75, 0.63, 0.5).

f0 ∼ N (0, 1), f0 = f0,l for 1 ≤ l ≤ L. Table 3.3 provides the EDD and PFA via analysis

and simulations. We see a good match.

PFASim. PFAAnal. EDDSim. EDDAnal.

18.78e− 4 19.85e− 4 44.319 43.290

26.68e− 4 27.51e− 4 36.028 34.634

36.30e− 4 35.16e− 4 27.770 25.977

Table 3.3: DualSPRT for different SNR’s between the primary and the Secondary Users:

Comparison of EDD and PFA obtained via analysis and simulation.

3.4 Asymptotic optimality of DualSPRT

The two hypotheses H0 and H1 are assumed to have known prior probabilities π and

1 − π respectively. A cost c (≥ 0) is assigned to each time step taken for decision. Let

Wi > 0, i = 0, 1 be the cost of falsely rejecting Hi. Then Bayes risk of a test δ with

stopping time N is defined as

Rc(δ) = π[cE0(N) +W0P0{reject H0}] + (1− π)[cE1(N) +W1P1{rejectH1}]. (3.12)

Also, KL-divergence of two probability distributions P and Q on the same measurable

space (Ω,F) is defined as

D(P ||Q) =





∫
log dP

dQ
dP , if P << Q,

∞ , otherwise ,
(3.13)
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where P << Q denotes that P is absolutely continuous w.r.t. Q. We also use the following

notation:

D0
tot =

L∑

l=1

D(f0,l||f1,l), D
1
tot =

L∑

l=1

D(f1,l||f0,l), rl =
D(f0,l||f1,l)

D0
tot

, ρl =
D(f1,l||f0,l)

D1
tot

.

Let Ai(c) be the event that all the Secondary Users transmit bi when the true hypoth-

esis is Hi. Also let ∆(Ai) be the drift of the fusion center LLR process Fk when the Ai

happens, i.e., ∆(Ai) = Ei

[
(log

gµ1 (Yk)

g−µ0 (Yk)
)|Ai

]
. We will also need

τl(c)
∆
= sup

{
n ≥ 1 :

n∑

i=1

log
f1,l(Xi,l)

f0,l(Xi,l)
≥ −| log c|

}
, τ(c)

∆
= max

1≤l≤L
τl(c). (3.14)

It can be seen that τl(c) is the last time random walk with drift δ0,l < 0, will be above

−| log c|.
We make the following assumptions for Theorem 3.5 and Theorem 3.8.

(A1) {Xk,l, k ≥ 0} is i.i.d. and independent of {Xk,j, k ≥ 0} for all l 6= j.

(A2) The following hold, for each l,

∫ (
log

(
f1,l(x)

f0,l(x)

))2

f1,l(x)dx <∞ and

∫ (
log

(
f0,l(x)

f1,l(x)

))2

f0,l(x)dx <∞.

In the rest of this section, local node thresholds are γ0,l = −rl| log c|, γ1,l = ρl| log c|
and fusion center thresholds are β0 = −| log c|, β1 = | log c|.

We use θi as the mean of the drift of fusion center random walk Fk when all the local

nodes transmit wrong decisions under Hi and σ2 as the variance of the drift, which is

independent of local node decisions. For convenience in the following theorem, we take

µ1 = µ0 = µ > 0 and b1 = −b0 = b > 0.

Theorem 3.5. For DualSPRT with the assumptions A(1)− A(2),

lim
c→0

E0[N ]

| log c| ≤
1

D0
tot

+M0 and lim
c→0

E1[N ]

| log c| ≤
1

D1
tot

+M1,

where M0 and M1 are of the form C0/∆(A0) and C1/∆(A1) respectively, where C0 and

C1 are constants.
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Proof: We will prove the theorem under H0. The proof under H1 will follow in the

same way.

Let ν(a) be the stopping time when a random walk starting at zero with drift ∆(A0)

(-ve under our assumptions) crosses a. Then,

N ≤ N0 ≤ τ(c) + ν(−| log c| − Fτ(c)).

Therefore,
E0[N ]

| log c| ≤
E0[τ(c)]

| log c| +
E0[ν(−| log c| − Fτ(c))]

| log c| . (3.15)

We consider the first term on the R.H.S. of (3.15). Under our assumptions and choice

of local node thresholds as ρl| log c| and −rl| log c|, from [36, Theorem 2] and the definition

of the stopping time in [36, p. 2084], it can be seen that

lim
c→0

E0[τ(c)]

| log c| ≤
1

D0
tot

. (3.16)

Also from [17, Remark 4.4, p. 85] as c → 0, τl(c) → ∞ a.s. and lim
c→0

τl(c)

| log c| = − 1

δ0,l

a.s. Therefore
τ(c)

| log c| → max
l
− 1

δ0,l

∆
=

1

δ̂0

a.s. (3.17)

Furthermore, from [24, proof of Theorem 1 (i) ⇒ (ii) p. 871], it can be seen that

{τl(c)/| log c|} is uniformly integrable. Thus,

E[τ(c)]

| log c| →
1

δ̂0

The second term in R.H.S. of (3.15),

E0[ν(−| log c| − Fτ(c))]

| log c| ≤ E0[ν(−| log c|)]
| log c| +

E0[ν(−Fτ(c))]

| log c| . (3.18)

We know, from ([17, Chapter III]),

E0[ν(−| log c|)]
| log c| → − 1

∆(A0)
. (3.19)
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Next consider E0[ν(−Fτ(c))]. We have,

E0[ν(−Fτ(c))]

| log c| =
1

| log c|

| log c|∫

0

E0[ν(−x)|Fτ(c) = x] dPFτ(c)(x)

+
1

| log c|

∞∫

| log c|

E[ν(−x)] dPFτ(c)(x)

≤ E0[ν(−| log c|)]
| log c| +

∞∫

| log c|

E0[ν(−x)]

x

x

| log c| dPFτ(c)(x). (3.20)

Since E0[ν(−x)]/x→ −1/∆(A0) as x→∞, for any ε > 0, ∃M such that

E0[ν(−x)]

x
≤ ε− 1

∆(A0)
for x > M.

Take c1 such that | log c| > M for c < c1. Then, for c < c1,

∞∫

| log c|

E0[ν(−x)]

x

x

| log c| dPFτ(c)(x) ≤
ε− 1

∆(A0)

| log c|

∞∫

| log c|

x dPFτ(c)(x)

≤
ε− 1

∆(A0)

| log c| E0[Fτ(c)]. (3.21)

Since limc→0 τ(c)/| log c| = 1/δ̂0 a.s. and {τ(c)/| log c|} is uniformly integrable, when

E0

[(
log

f1,l(X1,l)

f0,l(X1,l)

)2
]
<∞, 1 ≤ l ≤ L, we get, ([17, Remark 7.2, p. 39]),

lim
c→0

E0[Fτ(c)]

| log c| ≤
1

δ̂0

θ0, (3.22)

where θ0 is upper-bounded by ∆(A1).

From (3.20), (3.21) and (3.22),

lim
c→0

E0[ν(−Fτ(c))]

| log c| ≤ − 1

∆(A0)
+

(
ε− 1

∆(A0)

)
θ0

δ̂0

.

This, with (3.15), (3.16) and (3.18), implies that (since ε can be taken arbitrarily small),

lim
c→0

E0[N ]

| log c| ≤
1

D0
tot

+M0,
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where M0 = − 1

∆(A0)

(
2 +

θ0

δ̂0

)
. Due to Lemma 3.1, θ0 approaches zero as c→ zero,

Similarly we can prove lim
c→0

E1[N ]

| log c| ≤
1

D1
tot

+ M1, M1 > 0 being a constant depended

on ∆(A1), 1/δ̂1
∆
= max

l
(1/δ1,l), θ1 and D1

tot.

Remark 3.6. If we assume fusion center noise as N (0, σ2
FC), then ∆(A0) = −2µLb/σ2

FC

and ∆(A1) = 2µLb/σ2
FC . Therefore M0 and M1 in Theorem 3.5 → 0 if µ → ∞ and/or

b→∞ and/or σ2
FC → 0.

Table 3.4 compares the asymptotic upper bounds of EDD from Theorem 3.5 with the

analysis given in Section 3.3 and simulations. We use the example provided in Section

3.3.3 and assume π0 = 0.5. We see that the approximate analysis of Section 3.3 provides

much better approximation at threshold values of practical interest in Cognitive Radio.

Perhaps this is the reason, the asymptotically optimal schemes do not necessarily provide

very good performance at operating points of practical interest.

PMDSimn. EDDSimn. EDDAnal. EDDAsym.

0.01610 13.928 12.6913 19.35

0.00125 15.6716 16.4216 21.17

(a) Under H1

PFA Simn. EDDSimn. EDDAnal. EDDAsym.

0.0613 11.803 10.583 18.26

0.0031 15.1766 14.830 20.81

(b) Under H0

Table 3.4: Comparison of EDD obtained via simulation, analysis and asymptotics.

Let Ri = min1≤l≤L
(
− log inft≥0Ei

[
exp

(
−t log

f1,l(X1,l)

f0,l(X1,l)

) ])
and ϕli be the minimal

value such that Ei

[
exp

(
−ϕli log

f1,l(X1,l)

f0,l(X1,l)

) ]
= eη for η > 0 and ϕi =

∑L
l=1 ϕ

l
i. Let

ξk = log
gµ1 (Yk)

g−µ0 (Yk)
. Then Fn =

∑n
k=1 ξk and µi(k) = Ei[ξk]. We assume the fusion center

noise is N (0, σ2
FC). The following lemma will be needed in the next theorem.
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Lemma 3.7. If µ < min

(√
R0σ2

FC

8
,
R0σ2

FC

4Lb

)
, then E0

[
eη1Fτ(c)

]
<∞ for 0 < η1 < R∗ and

R∗ > 1.

Proof: By Holder’s inequality,

E0

[
eη1Fτ(c)

]
= E0

[
eη1

∑τ(c)
k=1 ξk

]
= E0

[
eη1

∑τ(c)
k=1(ξk−µ0(k))+η1

∑τ(c)
k=1 µ0(k)

]

≤
(
E0

[
eη1p

∑τ(c)
k=1(ξk−µ0(k))

])1/p (
E0

[
eη1q

∑τ(c)
k=1 µ0(k)

])1/q

, (3.23)

where 1/p+ 1/q = 1. Let p′ = η1p and ξ′k = ξk − µ(k). Thus, {ξ′k} is i.i.d. ∼ N (0, σ2
FC).

Also, E0

[
eη1Fτ(c)

]
<∞ if E0

[
ep
′∑τ(c)

k=1 ξ
′
k

]
<∞ and E0

[
eη1q

∑τ(c)
k=1 µ0(k)

]
<∞. Since

∑n
k=1 ξ

′
k

is independent of τ(c),

E0

[
ep
′∑τ(c)

k=1 ξ
′
k

]
=
∞∑

n=1

E0

[
ep
′∑n

k=1 ξ
′
k

∣∣τ(c) = n
]
P [τ(c) = n]

=
∞∑

n=1

E0

[
ep
′∑n

k=1 ξ
′
k

]
P [τ(c) = n] =

∞∑

n=1

(
E0

[
ep
′ξ′1

])n
P [τ(c) = n]

= E0

[(
E0

[
ep
′ξ′1

])τ(c)
]
<∞, (3.24)

if E0[ep
′ξ′1 ] < ∞ and E0[φ(p)τ(c)] < ∞, where φ(p) = E0[ep

′ξ′1 ]. From [22, Theorem 1.3]

E0[eη2 τl(c)] < ∞, for 0 < η2 < Rl
0 and Rl

0 = − log inft≥0E0

[
e
−t log

f1,l(X1,l)

f0,l(X1,l)

]
. Combining

this fact with τ(c) <
∑L

l=1 τl(c) (see (3.14)) yields E0[eη2τ(c)] < E0[e
∑L
l=1 η2τl(c)] < ∞, for

0 < η2 < R0 = minlR
l
0. Therefore E0[φ(p)τ(c)] <∞ if 0 < log φ(p) < R0.

Also, if 0 < η1qθ0 < R0,

E0

[
eη1q

∑τ(c)
k=1 µ0(k)

]
≤ E0

[
eη1qτ(c)θ0

]
<∞. (3.25)

Since the fusion center noise is N (0, σ2
FC), log φ(p) = 2 µ2

σ2
FC
η2

1p
2 and η1qθ0 = η1q

2µ
σ2
FC
Lb.

From (3.24) and (3.25),

η1 < min



√
R0σ2

FC

2µ2p2
,
R0σ

2
FC

2µLbq


 ∆

= R∗. (3.26)
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Taking p = q = 2, to make R∗ > 1, we need,

µ < min

(√
R0σ2

FC

8
,
R0σ

2
FC

4Lb

)
. (3.27)

Theorem 3.8. Assume A(1)−A(2). Let µ < min

(√
R0σ2

FC

8
,
R0σ2

FC

4Lb

)
and the fusion center

noise be Gaussian. If
η +

θ20
2σ2

2(σ2 + θ0)
≥ 1+ϕ0 +

θ0

σ2
, for some 0 < η < R0, then lim

c→0

PFA
c| log c| =

0. Also if
η +

θ21
2σ2

2(σ2 + θ1)
≥ 1 + ϕ1 +

θ1

σ2
, for some 0 < η < R1, then lim

c→0

PMD

c| log c| = 0.

Proof: We prove the result for PFA. For PMD it can be proved in the same way.

Probability of False Alarm can be written as,

PFA = P0(Reject H0) = P0[FA after τ(c)] + P0[FA before τ(c)]. (3.28)

The first term in R.H.S.,

P0[FA after τ(c)] = P0[FA after τ(c);A0(c)] + P0[FA after τ(c); (A0(c))c]. (3.29)

Since events {FA after τ(c)} and (A0(c))c are mutually exclusive, the second term in the

above expression is zero. Now consider P0 [FA after τ(c);A0(c)]. For 0 < r < 1,

P0

[
FA after τ(c);A0(c)

]

≤ P0

[
Random walk with drift ∆(A0(c)) and initial value Fτ(c) crosses | log c|

]

≤ P0

[
Random walk with drift ∆(A0(c)) and Fτ(c) ≤ r| log c| crosses | log c|

]

+ P0

[
Random walk with drift ∆(A0(c)) and Fτ(c) > r| log c| crosses | log c|

]

≤ P0

[
Random walk with drift ∆(A0(c)) and Fτ(c) ≤ r| log c| crosses | log c|

]

+ P0

[
Fτ(c) > r| log c|

]
. (3.30)

Considering the first term in the above expression,

P0

[
Random walk with drift ∆(A0(c)) and Fτ(c) ≤ r| log c| crosses | log c|

]

c| log c|
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≤ P0

[
Random walk with drift ∆(A0(c)) and Fτ(c) = r| log c| crosses | log c|

]

c| log c|
(A)

≤ e−(1−r)s′| log c|

c| log c| =
c(1−r)s′

c| log c| → 0, (3.31)

iff (1− r)s′ ≥ 1. Here (A) follows from [40, p. 78-79] 1 where s′ is positive and it is the

solution of E0

[
e
s′ log

gµ1 (Yk)

g−µ0 (Yk) |A0(c)
]

= 1.

We choose s′ > 1 and 0 < r < 1 to satisfy (1− r)s′ ≥ 1. For s′ > 1, we need Lb/µ > 1

under H0 and H1 which follows from our assumptions.

Consider the second term in (3.30). From Lemma 3.7,

P0

[
Fτ(c) > r| log c|

]
≤ E0[eη1Fτ(c) ]

eη1r| log c| <∞. (3.32)

If η1r ≥ 1,
E0[eη1Fτ(c) ]

c1−η1r| log c| → 0. (3.33)

From Lemma 3.7, E0[eη1Fτ(c) ] < ∞ is assured by choosing µ as in (3.27). Then we can

choose η1 > 1,
1

η1

≤ r ≤ 1− 1

s′
.

Now we consider the second term in (3.28). Let F ∗k be the Gaussian random walk with

mean drift θ0, the worst case mean of the drift of Fk. Under H0, θ0 > 0 and under H1,

θ0 < 0. In contrast to Fk, F
∗
k is a random walk. Then,

P0[FA before τ(c)] ≤
∞∑

n=1

P0

[
sup

1≤k≤n
F ∗k ≥ | log c|

∣∣∣τ(c) = n

]
P [τ(c) = n]

=
∞∑

n=1

P0

[
sup

1≤k≤n
F ∗k ≥ | log c|

]
P [τ(c) = n]

≤
∞∑

n=1

P0

[
sup

1≤k≤n
(F ∗k − kθ0) ≥ | log c| − nθ0

]
P [τ(c) = n]

(A)

≤
∞∑

n=1

2P0 [F ∗n − nθ0 ≥ | log c| − nθ0]P [τ(c) = n]

1For a random walk Wn =
∑n

i=1 Xi, with stopping times Ta = inf{n ≥ 1 : Wn ≤ a}, Tb = inf{n ≥ 1 :
Wn ≥ b} and Ta,b = min(Ta, Tb), a < 0 < b, let s′ be the non-zero solution to M(s′) = 1, where M denotes
the M.G.F. of Xi. Then, s′ < 0 if E[Xi] > 0, and s′ > 0 if E[Xi] < 0 and E[exp(s′WTa,b

)] = 1 ([40,
p. 78-79]). Then it can be shown that P (WTa) ≤ exp(−s′a) when E[Xi] > 0 and P (WTb

) ≤ exp(−s′b)
when E[Xi] < 0.
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(B)

≤
∞∑

n=1

exp

(
−(| log c| − nθ0)2

2nσ2

)
P [τ(c) = n] , (3.34)

where (A) is due to the inequality (3.11) and (B) follows from the Chernoff bound of

Q-function. Therefore,

P0 [FA before τ(c)]

c| log c| ≤ 1

c| log c|
M∑

n=1

exp

(−| log c|2
2Mσ2

)
exp

(−θ2
0

2σ2

)
exp

(
θ0| log c|
σ2

)

+
1

c| log c|
∞∑

n=M+1

exp

(−nθ2
0

2σ2

)
exp

(
θ0| log c|
σ2

)
P [τ(c) ≥M + 1] . (3.35)

Take M = [| log c|/2(α + µ)], for some α > 0, [a] denoting integer part of a. Then the

first term on the R.H.S. of (3.35)

≤ 1

c| log c|M exp

(−| log c|2
2Mσ2

+
θ0| log c|
σ2

)

=
1

c| log c|M exp

(−| log c|
σ2

( | log c|
2M

− θ0

))
=
Mcα/σ

2

c| log c| → 0, (3.36)

if we take α such that α/σ2 ≥ 1. In the following we take α = σ2.

The second term in (3.35),

=
1

c| log c|
∞∑

n=M+1

exp

(−nθ2
0

2σ2

)
exp

(
θ0| log c|
σ2

)
P [τ(c) ≥M + 1]

≤ 1

c| log c| exp

(
θ0| log c|
σ2

)
E0

[
eητ(c)

]

eη(M+1)

∞∑

n=M+1

exp

(−nθ2
0

2σ2

)

=
1

c| log c| exp

(
θ0| log c|
σ2

)
E0

[
eητ(c)

]

eη(M+1)

e
−(M+1)θ20

σ2

1− e
−θ20
2σ2

(3.37)

≤ K
c
−θ0
σ2

c| log c|E0

[
eητ(c)

]
e−| log c|η′ , (3.38)

where η′ = η + θ2
0

/
2σ22(α + θ0) and K = e−η−M

θ20
σ2
/

1− e
−θ20
2σ2 .

Recall that E0

[
eητ(c)

]
< ∞ if 0 < η < R0 (see proof of Lemma 3.7). It can be

seen that η and η1 are independent constants. Moreover it is known from [22, Theorem

1.5] that, as | log c| → ∞, E0[eητl(c)] ≤ ϕ′l0e
ϕl0| log c|, where ϕl0 is the minimal value such
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that E0

[
e
−ϕl0 log

f1,l(X1,l)

f0,l(X1,l)

]
= eη, and ϕ′l0 is a function of ϕl0. Therefore, due to (3.14),

E[eητ(c)] ≤ ϕ′0e
ϕ0| log c|L, as c → 0, where ϕ0 =

∑L
l=1 ϕ

l
0 and ϕ′0 is a function of ϕ0. Then

(3.38) is upper-bounded by

K
c
−θ0
σ2

c| log c|ϕ
′
0c
−ϕ0cη

′ → 0, (3.39)

if η′ ≥ 1 + ϕ0 + θ0
σ2 .

Combining (3.31), (3.33) and (3.39), we get
PFA
c| log c| → 0 as c→ 0.

Following similar steps with obvious modifications we can also get
PMD

c| log c| → 0 as

c→ 0.

Let Rc(δcent.) and Rc(δDualSPRT ) be the Bayes’s Risk function of the optimal centralized

SPRT without considering fusion center noise and of DualSPRT respectively. For optimal

centralized SPRT without considering fusion center noise, ([36, p. 2076]),

lim
c→0

Rc(δcent.)

c| log c| =

(
π

D0
tot

+
1− π
D1
tot

)
.

From Theorem 3.5 and Theorem 3.8, using (3.12), for DualSPRT with Gaussian fusion

center noise,

lim
c→0

Rc(δDualSPRT )

c| log c| =

(
π

D0
tot

+
1− π
D1
tot

+ C

)
,

where C = M0π + M1(1− π). The constant C → 0 if we assume bi and/or µ as a linear

function of | log c|. This shows that DualSPRT is asymptotically Bayes in the centralized

setting, i.e., limc→0Rc(δcent.)/Rc(δDualSPRT ) = 1.

Remark 3.9. By observing that [36, Theorem 1] remains applicable for DualSPRT, from

[36, Theorem 2], DualSPRT is also asymptotically Bayes with respect to the Bayes solution

in the system with full local memory and without considering fusion center noise.

Remark 3.10. As the cost c decreases, essentially we are allowing more samples for

detection, which is captured in the modified expressions of γ0,l, γ1,l, β0 and β1.

For Gaussian input observations at the local nodes, assuming f1,l = f1, f0,l = f0 for

1 ≤ l ≤ L, we get δi,l = δi and ρi,l = ρi, Ri =
δ2
i

2ρ2
i

and ϕi =
Lδi
ρ2
i

(1− 1/
√

2).
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Using Lemma 3.1, θ0 and θ1 can be taken as zero. Assume H0 : N (0, 1) and σ2
FC = 1.

For SNR values −4dB (H1 : N (0.63, 1)), −10dB (H1 : N (0.3162, 1)) and −15dB (H1 :

N (0.1778, 1)), the conditions in the Theorem 3.8 are satisfied with µ in Lemma 3.7.

3.5 Unknown Received SNRs and Fading

3.5.1 Different and unknown SNRs

Next we consider the case where the received signal power is fixed but not known to the

local Cognitive Radio nodes. This can happen if the transmit power of the primary is

not known and/or there is unknown shadowing. As is usually assumed ([2], [61]), the

channel gains from CR nodes to the fusion center will be assumed known. This is more

realistic because within the CR network there will be more information about the system

parameters. Now we limit ourselves to the energy detector where the observations Xk,l

are average energy of M samples received by the lth Cognitive Radio node. Then for

somewhat large M , the pre and post change distributions of Xk,l can be approximated

by Gaussian distributions: f0,l ∼ N (σ2
l , 2σ

4
l /M) and f1,l ∼ N (Pl + σl

2, 2(Pl + σl
2)2/M),

where Pl is the received power and σ2
l is the noise variance at the lth CR node. Under

low SNR conditions (Pl + σ2
l )

2 ≈ σ4
l and hence Xk,l are Gaussian distributed with mean

change under H0 and H1. Now taking Xk,l−σ2
l as the data for the detection algorithm at

the lth node, since Pl is unknown we can formulate this problem as a sequential hypothesis

testing problem with

H0 : θ = 0 ; H1 : θ ≥ θ1 , (3.40)

where θ is Pl under H1 and θ1 is appropriately chosen.

The problem

H0 : θ ≤ θ0 ; H1 : θ ≥ θ1 , (3.41)

subject to the error constraints

Pθ{reject H0} ≤ α, for θ ≤ θ0, (3.42)

Pθ{reject H1} ≤ β, for θ ≥ θ1,
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for exponential family of distributions is well studied in ([31], [32]). The following algo-

rithm of Lai [31] is asymptotically Bayes optimal and hence we use it at the local nodes

instead of SPRT. Let θ ∈ A = [a1, a2]. Define

Wn,l = max

[
n∑

k=1

log
fθ̂n(Xk)

fθ0(Xk)
,

n∑

k=1

log
fθ̂n(Xk)

fθ1(Xk)

]
, (3.43)

N(g, c) = inf {n : Wn,l ≥ g(n c)} , (3.44)

where g() is a time varying threshold. The function g satisfies g(t) ≈ log(1/t) as t → 0

and is the boundary of an associated optimal stopping problem for the Wiener process

([31]). θ̂n is the Maximum-Likelihood estimate bounded by a1 and a2. For Gaussian f0

and f1, θ̂n = max{a1,min[Sn/n, a2]}. At time N(g, c) decide upon H0 or H1 according as

θ̂N(g,c) ≤ θ∗ or θ̂N(g,c) ≥ θ∗ ,

where θ∗ is obtained by solving D(fθ∗||fθ0) = D(fθ∗||fθ1).
For our case where H0 : θ = 0, unlike in (3.41) where H0 : θ ≤ 0, E[N |H0] largely

depends upon the value θ1. As θ1 increases, E[N |H0] decreases and E[N |H1] increases.

If Pl ∈ [P , P ] for all l then a good choice of θ1, is (P − P )/2.

In the distributed setup with the received power at the local nodes unknown, the local

nodes will use the Lai’s algorithm mentioned above while the fusion node runs the SPRT.

All other details remain same. We call this algorithm GLR-SPRT.

The performance of GLR-SPRT is compared with DualSPRT (where the received

powers are assumed known at the local nodes) for the example in Section 3.3.4 in Table

3.5. Interestingly E[N |H1] for GLR-SPRT is actually lower than for DualSPRT , but

E[N |H0] is higher.

3.5.2 Channel with Fading

In this section we consider the system where the channels from the primary transmitter

to the secondary nodes have fading (hl 6= 1). We assume slow fading, i.e., the channel

coherence time is longer than the hypothesis testing time.
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EDD PFA = 0.1 PFA = 0.05 PFA = 0.01

DualSPRT 1.921 3.074 5.184

GLRSPRT 2.745 3.852 6.115

(a) Under H0

EDD PMD = 0.1 PMD = 0.05 PMD = 0.01

DualSPRT 2.06 3.177 5.264

GLRSPRT 1.425 2.522 4.857

(b) Under H1

Table 3.5: Comparison of EDD between GLRSPRT and DualSPRT for different SNR’s

between the Primary and the Secondary Users.

When the fading gain hl is known to the lth secondary node then this case can be

considered as the different SNR case studied in Section 3.3.4. Thus we consider the case

where the channel gain hl is not known to the lth node.

We consider the energy detector setup of Section 3.5.1. However, now Pl, the received

signal power at the local node l is random. If the fading is Rayleigh distributed then Pl

has exponential distribution. The hypothesis testing problem becomes

H0 : f0,l ∼ N (0, σ2);H1 : f1,l ∼ N (θ, σ2) (3.45)

where θ is random with exponential distribution and σ2 is the variance of noise. We will

assume that σ2 is known at the nodes.

We are not aware of this problem being handled via sequential hypothesis testing

before. However we use Lai’s algorithm in Section 3.5.1 where we take θ1 to be the

median of the distribution of θ, i.e., P (θ ≥ θ1) = 1/2. This seems a good choice for θ1 as

a compromise between E[N |H0] and E[N |H1].

We use this algorithm on an example where σ2 = 1, θ = exp(1), Var(Zk) = 1, and

L = 5. The performance of this algorithm is compared with that of DualSPRT (with

perfect channel state information) in Table 3.6a (under H0) and Table 3.6b (under H1).
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We observe that under H1, for high PMD this algorithm works better than DualSPRT

with channel state information, but as PMD decreases DualSPRT becomes better and

the difference increases. For H0, GLRSPRT is always worse and the difference is almost

constant.

EDD PFA = 0.1 PFA = 0.05 PFA = 0.01

DualSPRT 1.669 2.497 4.753

GLRSPRT 3.191 4.418 7.294

(a) Under H0

EDD PMD = 0.1 PMD = 0.08 PMD = 0.06

DualSPRT 1.74 1.854 2.417

GLRSPRT 1.62 3.065 5.42

(b) Under H1

Table 3.6: Comparison between GLRSPRT and DualSPRT with slow-fading between

Primary and Secondary Users

3.6 Conclusions

We have proposed a simple, energy efficient, distributed cooperative spectrum sensing

technique, DualSPRT which uses SPRT at the cognitive radios as well as at the fusion

center. We also provide analysis of DualSPRT. Asymptotic optimality of DualSPRT is

studied. Next we modified the algorithm so as to be able to detect when the received

SNR is not known and when there is slow fading channels between the primary and the

secondary nodes.



Chapter 4

Decentralized Sequential Tests:

SPRT-CSPRT

This chapter considers some improvements over DualSPRT. The improved algorithm

is theoretically analysed and its performance is compared with existing decentralized

schemes. The chapter is organized as follows. Section 4.1 presents the new algorithm.

Section 4.2 compares the new algorithm with DualSPRT via simulations. Section 4.3

extends the algorithm to the scenario where the received SNR and channel gain are not

available. Section 4.4 theoretically analyses the algorithm and compares the expressions

for PFA/PMD and EDD obtained with simulations. Section 4.5 concludes the chapter.

The system model and notations are as in Chapter 3.

4.1 New Algorithms: SPRT-CSPRT and DualCSPRT

In DualSPRT presented in Chapter 3, observations {Yk} to the fusion center are not

always identically distributed. Till the first transmission from secondary nodes, these

observations are i.i.d. ∼ N (0, σ2). But after the transmission from the first local node

till the transmission from the second node, Yk are i.i.d. Gaussian with a different mean.

Thus the observations at the fusion center are no longer i.i.d.. Since the non-asymptotic

optimality of SPRT is known for i.i.d. observations only [37], using SPRT at the fusion

44
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center is not optimal although we have shown it to be asymptotically optimal.

We improve DualSPRT with the following modifications. Steps (1)-(3) (corresponding

to the algorithm run at the local nodes) are same as in DualSPRT. The steps (4) and (5)

are replaced by:

4. Fusion center runs two algorithms:

F 1
k = (F 1

k−1 + log [gµ1 (Yk) /gZ (Yk )])+, F 1
0 = 0, (4.1)

F 0
k = (F 0

k−1 + log [gZ (Yk) /g−µ0 (Yk )])−, F 0
0 = 0, (4.2)

where (x)+ = max(0, x), (x)− = min(0, x) and µ1 and µ0 are positive constants. gZ

is the pdf of i.i.d. noise {Zk} at the fusion center and gµ indicates the pdf of µ+Zk.

5. The fusion center decides about the hypothesis at time N where

N = inf{k : F 1
k ≥ β1 or F

0
k ≤ β0}

and β0 < 0 < β1. The decision at time N is H1 if F 1
N ≥ β1, otherwise H0.

The following discussion provides motivation for this test.

1. A sample path of the fusion center SPRT under the hypothesis H1 is provided in

Figure 4.1. If the SPRT sum defined in (3.4) goes below zero it delays in crossing

the positive threshold β1. Hence if we keep SPRT sum at zero whenever it goes

below zero, it reduces EDD. This can be shown mathematically as follows. Let

{Xk} be i.i.d. and W0 = W̃0 = 0, Wk+1 = (Wk +Xk)
+ and W̃k+1 = W̃k +Xk. Then

Wk ≥ W̃k for all k ≥ 0 and hence Wk will cross any positive threshold earlier than

W̃k. This happens in CUSUM [38]. Similarly one can use a CUSUM statistic under

H0 also. These ideas are captured in (4.1) and (4.2).

2. The proposed test is also capable of reducing false alarms caused by noise Zk before

first transmission (t1) from the local nodes. Note that in order to have the reflected

random walks F 1
k and F 0

k move away from zero, the drifts should be positive and
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Figure 4.1: Sample Path of Fk under SPRT Sum and CSPRT Sum for γ1 = 8, β1 = 20,

µ1 = 2 and µ0 = −2.

negative respectively. Let µ̂k = E[Yk] at time k. Then expected drift of F 1
k is

Eµ̂k

[
log

gµ1(Yk)

gZ(Yk)

]
= D(gµ̂k ||gZ)−D(gµ̂k ||gµ1). (4.3)

This indicates that the expected drift is positive only whenD(gµ̂k ||gZ) > D(gµ̂k ||gµ1).
Before first transmission from the local nodes gµ̂k is same as gZ , hence positive ex-

pected drift is not possible in this case. Since K-L divergence indicates the distance

between the distributions, after first transmission and under H1, this distance from

noise distribution increases and from gµ1 decreases (assuming the local nodes make

correct decisions, the justification for which is provided in Chapter 3). This makes

the drift more and more positive. Similarly for F 0
k the expected drift is negative

only when D(gµ̂k ||g−µ0) < D(gµ̂k ||gZ). This is not possible when gµ̂k = gZ , k < t1.

After t1, under H0, the KL-divergence with respect to gZ keeps on increasing and

that with respect to g−µ0 decreases and thus makes drift negative.

But in case of DualSPRT, SPRT at the fusion center has drift given by log
gµ1 (Yk)

g−µ0 (Yk)
.

This drift is difficult to keep zero only before t1 and thus creates more errors due to

noise Zk.

When gZ is N (0, 1) it can be seen that drift of F 1
k is positive when µk > µ1/2 and

drift of F 0
k is negative when µk < −µ0/2. This suggests the proper choice of µ1 and
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−µ0.

3. Even though the problem under consideration is hypothesis testing, this is essen-

tially a change detection problem at the fusion center. The observations at the

fusion center have the distribution of noise and after t1 the mean of it changes and

when the mean becomes a value determined by µ1 and −µ0, the test has to make a

decision fast. Thus the test tries to detect this change in distribution. Since this is

composite sequential change detection problem, observations are not i.i.d. and we

look for change in both directions, it is difficult to use existing algorithms avail-

able for sequential change detection. Nevertheless our test provides a guaranteed

performance in this scenario.

We consider one more improvement. When a local Cognitive Radio SPRT sum crosses

its threshold, it transmits b1/b0. This node transmits till the fusion center SPRT crosses

the threshold. If it is not a false alarm, then its SPRT sum keeps on increasing (de-

creasing). But if it is a false alarm, then the sum will eventually move towards the other

threshold. Hence instead of transmitting b1/ b0 the Cognitive Radio can transmit a higher

/ lower value in an intelligent fashion. This should improve the performance. Thus we

modify step (3) in DualSPRT as,

Yk,l =
4∑

i=1

b1
i I{Wk,l ∈ [γ1 +(i−1)∆1, γ1 + i∆1)}+ b0

i I{Wk,l ∈ [−γ0− (i−1)∆1,−γ0− i∆0)}

(4.4)

where ∆1 and ∆0 are the parameters to be tuned at the Cognitive Radio. The expected

drift under H1 (H0) is a good choice for ∆1 (∆0).

We call the algorithm with the above two modifications as SPRT-CSPRT (with ‘C’ as

an indication about the motivation from CUSUM).

If we use CSPRT at both the secondary nodes and the fusion center with the proposed

quantisation methodology (we call it DualCSPRT) it works better as we will show via

simulations in Section 4.2. In Section 4.4 we will theoretically analyse SPRT-CSPRT.

As the performance of DualCSPRT (Figure 4.2) is closer to that of SPRT-CSPRT, we

analyse only SPRT-CSPRT.
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4.2 Performance Comparison

Throughout the chapter we use γ1 = γ0 = γ, β1 = β0 = β and µ1 = µ0 = µ for the

simplicity of simulations and analysis.

We apply DualSPRT, SPRT-CSPRT and DualCSPRT on the following example and

compare their EDD for various values of PMD. We assume that the pre-change distribution

f0 and the post change distribution f1 are Gaussian with different means.

For simulations we have used the following parameters. There are 5 nodes (L =

5) and f0,l ∼ N (0, 1), for 1 ≤ l ≤ L. Primary to secondary channel gains are 0, -

1.5, -2.5, -4 and -6 dB respectively (the corresponding post change means of Gaussian

distribution with variance 1 are 1, 0.84, 0.75, 0.63 and 0.5). We assume Zk ∼ N (0, 5)

and drift of DualSPRT and SPRT-CSPRT at the fusion center is taken as 2µYk, with µ

being 1. We also take {b1
1, b

1
2, b

1
3, b

1
4} = {1, 2, 3, 4}, {b0

1, b
0
2, b

0
3, b

0
4} = {−1,−2,−3,−4} and

b1=−b0=1 (for DualSPRT). Parameters γ and β are chosen from a range of values to

achieve a particular PMD. Figure 4.2 provides the EDD and PMD via simulations. We

see a significant improvement in EDD compared to DualSPRT. The difference increases

as PMD decreases. The performance under H0 is similar.

Performance comparisons with the asymptotically optimal decentralized sequential

algorithms which do not consider fusion center noise (DSPRT [14], Mei’s SPRT [36]) are

given in Figure 4.3. Note that DualSPRT and SPRT-CSPRT include fusion center noise.

Here we take f0,l ∼ N (0, 1), f1,l ∼ N (1, 1) for 1 ≤ l ≤ L and Zk ∼ N (0, 1). We find

that the performance of SPRT-CSPRT is close to that of DSPRT and better than Mei’s

SPRT. Similar comparisons were obtained with other data sets.

4.3 Unknown Received SNR and Fading

In this section, we consider the following setup. We use energy detector at the Cognitive

Radios, i.e., the observations Xk,l are average of energy of past M observations received

by the lth Cognitive Radio node. Then as explained in Section 3.5.1 hypothesis testing

problem can be formulated as a change in mean of Gaussian distributions problem, where
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Figure 4.2: Comparison among DualSPRT, SPRT-CSPRT and DualCSPRT for different

SNR’s between the primary and the secondary users, under H1.

the mean θ1 under H1 is not known. For this case we used composite sequential hypothesis

testing proposed in [31] at the secondary nodes and used SPRT at the fusion node (GLR-

SPRT). Here, to take the advantage of CSPRT at the fusion node and the new quantisation

technique we modify GLR-SPRT to GLR-CSPRT with appropriate local quantisation.

Thus the secondary node’s hypothesis testing problem, sequential test, stopping criteria

and decision are modified as follows,

H0 : θ = θ0 ; H1 : θ ≥ θ1 . (4.5)

where θ0 = 0 and θ1 is appropriately chosen,

Wn,l = max

[
n∑

k=1

log
fθ̂n(Xk)

fθ0(Xk)
,

n∑

k=1

log
fθ̂n(Xk)

fθ1(Xk)

]
, (4.6)

and

N = inf {n : Wn,l ≥ g(cn)} . (4.7)

At time N , decide H1 if θ̂N > θ∗ and decide H0 if θ̂N ≤ θ∗. Other details are as in Section

3.5.1. Here, as the threshold is a time varying, decreasing and a nonlinear function
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Figure 4.3: Comparison among DualSPRT, SPRT-CSPRT, Mei’s SPRT and DSPRT un-

der H1.

(approximately negative logarithm function), the quantisation (4.4) is changed in the

following way: if θ̂N ≥ θ∗, let I1 = [g(k c), g(k c 3 ∆)), I2 = [g(k c 3 ∆), g(k c 2 ∆)), I3 =

[g(k c 2 ∆), g(k c∆)) and I4 = [g(k c∆),∞). Yk,l = b1
n if Wk,l ∈ In for some n. If θ̂N ≤

θ∗ we will transmit from {b0
1, b

0
2, b

0
3, b

0
4} under the same conditions. Here ∆ is a tuning

parameter and 0 ≤ 3∆ ≤ 1. The choice of θ1 in (4.5) affects the performance of E[N |H0]

and E[N |H1] for the above algorithm. As θ1 increases, E[N |H0] decreases and E[N |H1]

increases.

The performance comparison of GLR-SPRT and GLR-CSPRT for the example in

Section 4.2 (with Zk ∼ N (0, 1)) is given in Figure 4.4a and Figure 4.4b. Here ∆ = 0.25.

As the performance under H1 and H0 are different, we give the values under both. We can

see that GLR-SPRT is always inferior to GLR-CSPRT. For EDD under H1, interestingly

GLR-CSPRT has lesser values than that of SPRT-CSPRT for PMD > 0.02 (note that

SPRT-CSPRT has complete knowledge of the SNRs), while under H0 it has higher values

than SPRT-CSPRT.

The above scenario can also occur if the fading channel gain hl is not known to the
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Figure 4.4: Comparison among SPRT-CSPRT, GLR-SPRT and GLR-CSPRT for different

SNR’s between the Primary and the Secondary Users

Cognitive node l. Then under slow fading with Rayleigh distribution and using energy

detector at the Cognitive Radios, f0,l ∼ N (0, σ2) and f1,l ∼ N (θ, σ2) where θ is random

with exponential distribution and σ2 is the variance of noise. Now we use GLR-CSPRT

with the composite sequential hypothesis given in (4.5). The parameter θ1 is chosen as

the median of the distribution of θ, such that P (θ ≥ θ1) = 1/2. This seems a good

choice for θ1, as a compromise between E[N |H0] and E[N |H1]. We use the example given

in Section 4.2 with Zk ∼ N (0, 1) and θ ∼ exp(1). Table 4.1 provides comparison of

DualSPRT, GLR-SPRT and GLR-CSPRT. Notice that the comment given for EDD for

Figure 4.4a is also valid here.

4.4 Performance Analysis of SPRT-CSPRT

EDD and PFA/PMD analysis is same under H1 and H0. Hence we provide analysis under

H1 only.

4.4.1 PMD Analysis

Between each change of drift (which occurs due to the change in number of Cognitive

Radios transmitting to the fusion node and due to the change in the value transmitted

according to the quantisation rule (4.4)) at the fusion center, under H1, (4.1) has a positive
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EDD PFA=0.1 PFA=0.07 PFA=0.04

DualSPRT 1.669 1.891 2.673

GLR-SPRT 3.191 3.849 4.823

GLR-CSPRT 2.615 3.192 4.237

(a) Under H0

EDD PMD=0.1 PMD=0.07 PMD=0.04

DualSPRT 1.74 1.948 2.728

GLR-SPRT 1.62 3.533 9.624

GLR-CSPRT 0.94 1.004 4.225

(b) Under H1

Table 4.1: Comparison among DualSPRT, GLR-SPRT and GLR-CSPRT with slow fading

between the Primary and the Secondary Users

drift and behaves approximately like a normal random walk. Under H1 (4.2) also has a

positive drift, but due to the min in its expression it will stay around zero and as the

event of crossing negative threshold is rare (4.2) becomes a reflected random walk between

each drift change. Similarly under H0, (4.1) and (4.2) become reflected random walk and

normal random walk respectively. The false alarm occurs when the reflected random walk

crosses its threshold.

Under H1, let

τβ
4
= inf{k ≥ 1 : F 0

k ≤ −β} and Tβ
4
= inf{k ≥ 1 : F 1

k ≥ β}. (4.8)

Following the same argument in Section 3.3.2 PMD analysis, we get,

P1(reject H1) = P1(τβ < Tβ) ≈ P1(τβ < t1).

P1(τβ < t1) =
∞∑

k=1

P1(τβ ≤ k, k < t1) =
∞∑

k=1

P1(τβ ≤ k|k < t1)P1(t1 > k). (4.9)
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In the following we compute P1(τβ > x|τβ < t1) and P1(t1 > k). It is shown in [45] that,

lim
β→∞

P1{τβ > x|τβ < t1} = exp(−λβx), x > 0, (4.10)

where λβ is obtained by finding solution to an integral equation obtained via renewal

arguments ([46]). Let L(s) be the mean of τβ with F 0
0 = s and Sk = log [gZ (Yk) /g−µ0 (Yk)].

Note that {Sk, k < t1} are i.i.d. From the renewal arguments, by conditioning on S1 = z,

L(s) = P (S1 > −s)(L(0) + 1) +

∫ −s

−β−s
(L(s+ z) + 1) dFS1(z) dz + FS1(−β − s),

where FS is the distribution of Sk before the first transmission from the local nodes. This

is a Fredholm integral equation of the second kind ([48]). Existence of a unique solution

for it is shown in [4]. An efficient recursive algorithm to solve it is provided in [34]. By

solving these equations numerically, we get λβ = 1/L(0).

From the central limit theorem approximation given in Section 3.3.1 we can find the

distribution of t1. Thus (4.9) provides,

P1(False alarm before t1) ≈
∞∑

k=1

(1− e−λβk)
L∏

l=1

(1− ΦNl(k)),

where ΦNl is the Cumulative Distribution Function of Nl, obtained from the Gaussian

approximation.

Table 4.2 provides comparison of PMD via simulation and analysis.

4.4.2 EDD Analysis

In this section we compute EDD theoretically. Recall that ti also indicates the first time

at which i local nodes are transmitting. Mean of ti can be computed from the method

explained in [5], for finding kth central moment of non i.i.d. ith order statistics.

Between ti and ti+1 the drift at the fusion center is not necessarily constant because

there are four thresholds (each corresponds to different quantizations) at the secondary

node. The transmitted value changes after crossing each threshold, b1 → b2 . . .→ b4. Let

tji , 1 ≤ j ≤ 3 be the time points at which a node changes the transmitting values from bj
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to bj+1 between ti and ti+1. We assume that with a high probability the secondary node

with the lowest first passage time mean will transmit first, the node with the second lowest

mean will transmit second and so on. This is justified by the fact that the distribution

of a first passage time of γ > 0 by a random walk with mean drift δ > 0 and variance σ2

is N (γ
δ
, σ

2 γ
δ3

). Thus if δ is large, the mean γ/δ is small and the variance σ2γ/δ3 is much

smaller. In the following we will make computations under these approximations. The

time difference between tjthi and tjthi+1 transmission can be calculated if we take the second

assumption (=∆1/δ1,l). We know E[ti] for every i from an argument given earlier. Suppose

lth node transmits at tthi instant and if E[ti]+∆1/δ1,l < E[ti+1] then E[t1i ] = E[ti]+∆1/δ1,l.

Similarly if E[t1i ]+∆1/δ1,l < E[ti+1] then E[t2i ] = E[t1i ]+∆1/δ1,l and so on. Let us represent

the sequence t = {t1, t11, t21, t31, t2, ..., t55} (entry only for existing ones by the above criteria)

by T = {T1, T2, T3, ...}.
Let δki,FC be the mean drift at the fusion center between Tk and Tk+1, under Hi.

Thus Tk’s are the transition epochs at which the fusion center drift changes from δk−1
i,FC

to δki,FC . Also let F̄k = E[FTk−1] be the mean value of Fk just before the transition

epoch Tk. With the assumption of the very low Pmd at the local nodes and from the

knowledge of the sequence t we can easily calculate δk1,FC for each Tk. Similarly F̄k+1 =

F̄k + δk1,FC(E[Tk+1]− E[Tk]). Then,

EDD ≈ E[Tl∗ ] +
β − F̄l∗
δl
∗

1,FC

(4.11)

where

l∗ = min{j : δj1,FC > 0 and
β − F̄j
δj1,FC

< E[Tj+1]− E[Tj]}.

The above approximation of EDD is based on Central Limit Theorem and Law of Large

Numbers and hence is valid for any distributions with finite second moments. Table 4.2

provides the simulation and corresponding analysis values. We used the same set-up as

in Section 4.2 (with Zk ∼ N (0, 1)).
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PMDSim. PMDAnal. EDDSim. EDDAnal.

0.01675 0.01624 26.8036 24.9853

0.0072 0.0065 30.0817 29.1322

0.00686 0.00623 36.1585 35.5624

Table 4.2: Comparison of EDD and PMD obtained via analysis and simulation under H1

4.5 Conclusions

In this chapter, we provide improved algorithms SPRT-CSPRT and DualCSPRT over Du-

alSPRT. We show that these algorithms can provide significant improvements (simulation

studies show that the improvement is over 25%). To develop the improved algorithm we

use CUSUM algorithm used for detection of change rather than SPRT which is optimal

for hypothesis testing for a single node. We provide theoretical analysis of SPRT-CSPRT

and compare to simulations. Interestingly we find that the performance of the proposed

algorithm is better than a first order asymptotically optimal algorithm and close to a

second order asymptotically optimal algorithm available in literature for decentralized

sequential detection without fusion center noise. We further extend our algorithms to

cover the case of unknown SNR and channel fading and obtain satisfactory performance

compared to perfect channel state information case.



Chapter 5

Universal Sequential Hypothesis

Testing using Universal Source

Coding

Universal frameworks are always interesting and useful. In spectrum sensing scenario,

even though a large number of algorithms are available, it is rare to see a universal

scheme. Universal schemes do not need any kind of knowledge (distribution, parameters,

signal power etc.) about the primary user and still provide performance guarantees.

Spectrum sensing requires a fast decision making, thus universal efficient tests in sequential

framework are the apt one. We develop novel universal algorithms in this chapter. Our

universal tests are based on universal source coding ([11]).

We consider the following hypothesis testing problem: Given i.i.d. observationsX1, X2,

. . . , we want to know whether these observations came from the distribution P0 (hypoth-

esis H0) or from another distribution P1 (hypothesis H1). When the observations come

from a source with continuous alphabet, we assume P0 and P1 have densities f0 and f1

with respect to some probability measure. We will assume that P0 is known but P1 is

unknown. Of course if the distribution of P1 belong to an exponential family with an

unknown parameter θ then we can use asymptotically optimal tests presented in Section

3.5.1.

56
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Our problem is motivated from the Cognitive Radio scenario. In a CR setup, a CR

user checks to see if a frequency band is being used by a primary (hypothesis H1) or not

(hypothesis H0). Under H0 the CR receiver only senses noise. Usually receiver noise is

Gaussian with mean zero and its variance can often be estimated. However, under H1

the primary is transmitting. The primary’s transmit power, modulation and channel gain

may be time varying and not known to the CR node. Thus P1 (f1) will usually not be

completely known to the CR node.

We first discuss the problem for a single CR and then generalize to cooperative setting.

We will be mainly concerned with continuous alphabet observations because receiver

almost always has Gaussian noise.

This chapter is organized as follows. Section 5.1 presents the finite alphabet case.

Almost sure finiteness of the stopping time, a bound on PFA, asymptotic properties of

PMD and convergence of moments of stopping time are proved. Section 5.2 extends the

test to continuous alphabet. Algorithms based on two universal codes are given there.

Performance of these tests are compared in Section 5.3. Section 5.4 provides decentralized

universal tests and Section 5.5 concludes the chapter.

Notation Meaning

Xk Observation at time k, can come from discrete or continuous alphabet

X∆
k Quantized observation at time k in case of continuous alphabet

Lk(X
k
1 ) Code length function corresponding to X1, . . . , Xk

Wk SPRT sum at time k

Ŵk Test statistic at time k using universal lossless code

W̃k Test statistic at time k using universal lossless code and quantization

N Stopping time of the sequential test

log β,− logα Lower and upper thresholds of the test

Table 5.1: List of important notations specific to this chapter
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5.1 Finite Alphabet

We first consider finite alphabet for the distributions P0 and P1. This test is motivated

from the universal one sided sequential test for discrete alphabet in [23]. In one sided tests

one assumes H0 as the default hypothesis and has to wait a long time to confirm whether

it is the true hypothesis (H0 is the true hypothesis only when the test never stops) and in

spectrum sensing this is not desirable because it is important to make a quick decision.

Hence we switch our attention to two sided tests which have a finite decision time under

both H0 and H1.

In SPRT, which we have used in this thesis, stopping time

N
∆
= inf{n : Wn /∈ (log β,− logα)}, 0 < α, β < 1 (5.1)

where,

Wn =
n∑

k=1

log
P1(Xk)

P0(Xk)
. (5.2)

At time N , the decision rule δ decides H1 if WN ≥ − logα and H0 if WN ≤ log β.

SPRT requires full knowledge of P1. Now we propose our test when P1 is unknown by

replacing the log likelihood ratio process Wn in (5.2) by

Ŵn = −Ln(Xn
1 )− logP0(Xn

1 )− nλ
2
, λ > 0, (5.3)

where λ > 0 is an appropriately chosen constant and Ln(Xn
1 ) (

∆
= length of the codeword

corresponding to Xn
1 ) is the codelength function of a universal lossless source code for the

data Xn
1

∆
= X1, . . . , Xn.

The following discussion provides motivation for our test.

1. By Shannon-Macmillan Theorem ([11]) for any stationary, ergodic source limn→∞

n−1 logP (Xn
1 ) = −H(X) a.s. where H(X) is the entropy rate. We consider universal

lossless codes whose codelength function Ln satisfies limn→∞ n−1Ln = H(X) a.s., at

least for i.i.d sources. The codes which satisfy this condition are called pointwise

universal whereas the codes which satisfy this in terms of expectation are called

universal. It is shown in [66] that not all universal codes are pointwise universal.
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We consider algorithms like LZ78 ([76]) which satisfy this convergence even for

stationary, ergodic sources. Thus, for such universal codes,

1

n
(Ln(Xn

1 ) + logP (Xn
1 ))→ 0 w.p.1. (5.4)

2. Under hypothesis H1, E1[− logP0(Xn
1 )] is approximately nH1(X) +nD(P1||P0) and

for large n, L(Xn
1 ) is approximately nH1(X) where H1(X) is the entropy under H1

and D(P1||P0) is the KL-divergence (3.13). This gives the average drift under H1

as D(P1||P0) − λ/2 and under H0 as −λ/2. To get some performance guarantees

(average drift under H1 greater than λ/2), we limit P1 to a class of distributions,

C = {P1 : D(P1||P0) ≥ λ}. (5.5)

λ can be chosen as the minimum Kullback-Leibler divergence, which is related to

the minimum SNR under consideration.

3. When considering universal hypothesis testing in Neyman-Pearson framework (fixed

sample size) the existing work considers the optimisation problem in terms of error

exponents ([33]):

sup
δFSS

lim inf
n→∞

− logPMD,

such that lim inf
n→∞

− logPFA ≥ α̂, (5.6)

where PFA is the false alarm probability, PMD is the miss-detection probability, δFSS

is the fixed sample size decision rule and α̂ > 1. But in the sequential detection

framework the aim is to

min
(N,δ)

E1[N ], min
(N,δ)

E0[N ],

such that PFA ≤ α and PMD ≤ β.

In case of the universal sequential detection framework, the objective can be to

obtain a test satisfying PFA ≤ α and PMD ≤ β with

E1[N ]→ ES
1 [N ] =

| logα|
D(P1||P0)

, (5.7)
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E0[N ]→ ES
0 [N ] =

| log β|
D(P0||P1)

, (5.8)

as α+β → 0 where ES
i (N) is the expected value of N under Hi for SPRT, i = 0, 1.

These ideas are considered in Proposition 5.1 and Theorem 5.3.

Thus our test is to use Ŵn in (5.1) when P0 is known and P1 can be any distribution

in class C defined in (5.5). Our test is useful for stationary and ergodic sources also. Note

that our test is more generally applicable than ”robust” sequential tests available which

are usually insensitive only against small deviations from the assumed statistical model

([20]).

The following proposition proves the almost sure finiteness of the stopping time of the

proposed test. This proposition holds if {Xk} are stationary, ergodic and the universal

code satisfies a weak pointwise universality. Let H i be the entropy rate of {X1, X2, . . .}
under Hi, i = 0, 1. Also let N1 = inf{n : Ŵn > − logα} and N0 = inf{n : Ŵn < log β}.
Then N = min(N0, N1).

Proposition 5.1. Let Ln(Xn
1 )/n→ H i in probability for i = 0, 1. Then

(a) P0(N <∞) = 1.

(b) P1(N <∞) = 1.

Proof: (a) Since P0(N <∞) ≥ P0(N0 <∞), we show P0(N0 <∞) = 1.

From our assumptions, we have, as n→∞,

Ŵn

n
= − Ln(Xn

1 )

n
− logP0(Xn

1 )

n
− λ

2
→ −λ

2
in probability.

Therefore,

P0[N0 <∞] ≥ P0[Ŵn < log β] = P0

[
Ŵn

n
<

log β

n

]
→ 1.

(b) The proof follows as in (a), observing that P1(N <∞) ≥ P1(N1 <∞) and Ŵn/n→
D(P1||P0)− λ/2 > 0 in probability.
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Remark 5.2. The assumption Ln(Xn
1 )/n→ H i in probability, which is equivalent to the

pointwise universality of the universal code, has been shown to be true for i.i.d. sequences

for the two universal source codes LZ78 ([27]) and KT-estimator with Arithmetic encoder

([68] with the redundancy property of Arithmetic Encoder [11]) considered later in this

Chapter.

We introduce the following notation: for ε > 0,

N∗1 (ε)
∆
= sup{n ≥ 1 : | − Ln(xn1 )− logP1(xn1 )| > nε}, (5.9)

N∗0 (ε)
∆
= sup{n ≥ 1 : | − Ln(xn1 )− logP0(xn1 )| > nε}, (5.10)

An1(ε)
∆
= {x∞1 : sup

n≥n1

| − Ln(xn1 )− logP1(xn1 )| < nε}, (5.11)

Bn1(ε)
∆
= {x∞1 : sup

n≥n1

| − Ln(xn1 )− logP0(xn1 )| < nε}. (5.12)

Observe that EP1(N
∗
1 (ε)p) < ∞ for all ε > 0 and all p > 0 is implied by a stronger

version of pointwise universality, maxxn1∈Xn
(
Ln(xn1 ) + logP1(xn1 )

)
∼ o(n), X being the

source alphabet. Similarly EP0(N
∗
0 (ε)p) < ∞. This property is satisfied by the two

universal codes used in this thesis for the class of memoryless sources: KT-estimator with

Arithmetic Encoder ([12, Chapter 6]) and LZ78 ([27], [76]).

The following theorem gives a bound for PFA and an asymptotic result for PMD.

Theorem 5.3.

(1) PFA
∆
= P0(ŴN ≥ − logα) ≤ α.

(2) If the observations X1, X2, . . . , Xn are i.i.d. and the universal source code satisfies the

stronger version of pointwise universality then

PMD
∆
= P1(ŴN ≤ log β) = O(βs),

where s is the solution of E1

[
e
−s
(

log
P1(X1)
P0(X1)

−λ
2
−ε
)]

= 1 for 0 < ε < λ/2 and s > 0.

Proof: (1) We have,

PFA = P0(N1 < N0) ≤ P0(N1 <∞).
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P0(N1 < ∞) ≤ α is proved in [23] and is provided here for the sake of completeness. It

uses the fact that the universal codes we consider are prefix-free and hence satisfy the

Kraft’s inequality ([11]).

P0(N1 <∞) =
∞∑

n=1

P0[N1 = n] =
∞∑

n=1

P0

[
−Ln(Xn

1 )− logP0(Xn
1 )− nλ

2
≥ − logα

]

≤
∞∑

n=1

∑

xn1 :P0(xn1 )≤2logα−Ln(Xn1 )−nλ2

P0(xn1 )

≤
∞∑

n=1

∑

xn1 :P0(xn1 )≤2logα−Ln(Xn1 )−nλ2

α 2−Ln(Xn
1 )−nλ

2

(a)

≤
∞∑

n=1

α 2−nλ/2 =
α

2λ/2 − 1
≤ α.

where (a) follows from Kraft’s inequality.

(2) We have, for any n1 > 0,

PMD = P1(N0 < N1) = P1[N0 < N1;N0 ≤ n1] + P1[N0 < N1; N0 > n1; An1(ε)]

+ P [N0 < N1; N0 > n1; Acn1
(ε)]. (5.13)

Since the universal code satisfies the stronger version of pointwise universality, for a given

ε > 0, we can take M1 such that P1(Acn1
(ε)) = 0 for all n1 ≥M1. In the following we take

n1 ≥M1.

Next consider the second term in (5.13). From Proposition 5.1, P1[N1 <∞] = 1 and

hence,

P1[N0 < N1;N0 > n1 ;An1(ε)] ≤ P1[N0 <∞;N0 > n1 ;An1(ε)]. (5.14)

Under An1(ε), for n ≥ n1, Ŵn satisfies

(−Ln(Xn
1 )− logP1(Xn

1 )) +

(
logP1(Xn

1 )− logP0(Xn
1 )− nλ

2

)
≥ log

P1(Xn
1 )

P0(Xn
1 )
− nλ

2
− nε.
(5.15)

R.H.S. is a random walk with positive drift, D(P1||P0)− (λ/2 + ε) (since D(P1||P0) > λ

and ε is chosen < λ/2). Let N0
1 be the stopping time of this random walk to cross −| log β|.
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Then P1(n1 < N0 <∞; An1(ε)) ≤ P1(N0
1 <∞). Now, from [40, p. 79],

P1[N0
1 <∞] ≤ es

′| log β|, (5.16)

where s′ is the solution of E1[e
s′
(

log
P1(X1)
P0(X1)

−λ
2
−ε
)
] = 1 and s′ < 0.

Finally consider P1[N0 < N1;N0 ≤ n1] ≤ P1[N0 ≤ n1]. Since we have finite alphabet,

Ln(Xn
1 ) ≤M2 for n = 1, . . . , n1 for some M2 <∞ and,

P1[N0 ≤ n1] ≤
n1∑

n=1

P1

[
−Ln(Xn

1 )− logP0(Xn
1 )− nλ

2
≤ −| log β|

]

≤
n1∑

n=1

P1

[
−M2 − logP0(Xn

1 )− nλ
2
≤ −| log β|

]

=

n1∑

n=1

P1

[
logP0(Xn

1 ) ≥ | log β| −M2 − n
λ

2

]
= 0, (5.17)

for all β < β2, for some β2 > 0.

Therefore as β → 0, using (5.13), (5.14), (5.16) and (5.17),

PMD ≤ βs = O(βs), s = −s′ > 0.

Under the above assumptions, we also have the following.

Theorem 5.4.

(a) Under H0, lim
α,β→0

N

| log β| =
2

λ
a.s. If E0[N∗0 (ε)p] <∞ and E0[(logP0(X1))p+1] <∞ for

all ε > 0 and for some p ≥ 1, then also,

lim
α,β→0

E0[N q]

| log β|q = lim
α,β→0

E0[(N0)q]

| log β|q =

(
2

λ

)q
,

for all 0 < q ≤ p.

(b) Under H1, lim
α,β→0

N

| logα| =
1

D(P1||P0)− λ/2 a.s. If E1[N∗1 (ε)p] <∞, E1[(logP1(X1))p+1] <

∞ and E1[(logP0(X1))p+1] <∞ for all ε > 0 and for some p ≥ 1, then also,

lim
α,β→0

E1[N q]

| logα|q = lim
α,β→0

E1[(N1)q]

| logα|q =

(
1

D(P1||P0)− λ
2

)q

,
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for all 0 < q ≤ p.

Proof: (a) We have

N = min{N0, N1}

= N0 I{N0 ≤ N1}+N1 I{N1 > N0}.

From Theorem 5.3, PFA → 0 as α→ 0, under H0, and hence,

lim
α,β→0

N

| log β| = lim
α,β→0

N0 I{N0 ≤ N1}
| log β| a.s. (5.18)

Define for, 0 < r < 1 a small constant,

Ar = {w : sup
n≤N∗0 (ε)

Ŵn ≤ r| log β| < | logα|}.

Then, because for n > N∗0 (ε), Ŵn ≤ −n(λ/2) + nε,

N0 I{N0 ≤ N1} ≤ N∗0 (ε) +
1 + r
λ
2
− ε | log β| I{Ar}+

| logα|+ | log β|
λ
2
− ε I{Acr}.

Since P0(Ar)→ 1 as α, β → 0,

lim sup
α,β→0

N0

| log β| = lim sup
α,β→0

N0 I{N0 ≤ N1}
| log β| ≤ lim sup

α,β→0

N∗0 (ε)

| log β| +
1 + r
λ
2
− ε →

1 + r
λ
2
− ε a.s.

Taking r → 0 and ε→ 0 we get

lim sup
α,β→0

N0

| log β| = lim sup
α,β→0

N0 I{N0 ≤ N1}
| log β| ≤ 2

λ
a.s. (5.19)

Next define

Br = {w : inf
n≤N∗0 (ε)

Ŵn ≥ −r| log β| < | logα|},

for r a small positive constant < 1. Then P (Br)→ 1 as β → 0 and hence

I{Br}
(1− r)| log β|

λ
2

+ ε
≤ N0

implies
(1− r)
λ
2

+ ε
≤ lim inf

α,β→0

N0

| log β| a.s. (5.20)
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Taking r → 0 and ε→ 0 from (5.18), (5.19) and (5.20) we get

lim
α,β→0

N

| log β| = lim
α,β→0

N0

| log β| =
2

λ
a.s.

Observe that

N0 ≤ N∗0 (ε) +
|ŴN∗0 (ε)|+ | log β|

λ
2
− ε .

Then by Cr-inequality, for p ≥ 1,

E0[(N0)p] ≤ Cp

[
E0[(N∗0 (ε))p] +

1

(λ
2
− ε)p (E0[|ŴN∗0 (ε)|

p
] + | log β|p)

]
, (5.21)

where Cp > 0 depends only on p. Also,

E0[|ŴN∗0 (ε)|p] = E0

[∣∣∣− LN∗0 (ε)(X
N∗0 (ε)
1 )− logP0(X

N∗0 (ε)
1 )−N∗0 (ε)

λ

2

∣∣∣
p]

≤ Cp

(
E0[(LN∗0 (ε)(X

N∗0 (ε)
1 ))p] + E0[| logP0(X

N∗0 (ε)
1 )|

p
] +

λp

2p
E0[(N∗0 (ε))p]

)
.

Furthermore, E0[(LN∗0 (ε)(X
N∗0 (ε)
1 ))p] < ∞ if E0[| logP0(X

N∗0 (ε)
1 )|

p
] < ∞. Since N∗0 (ε) is

not a stopping time, for E0[| logP0(X
N∗0 (ε)
1 )|

p
] <∞, we need E0[| logP0(X1)|p+1] <∞ and

E0[(N∗0 (ε))p] <∞ (see, e.g., [17, p. 33]).

Thus from (5.21), for a fixed ε,

E0[(N0)p]

| log β|p ≤ Cp

[
E0[(N∗0 (ε))p]

| log β|p +
2p

λp
E0[|ŴN∗0 (ε)|

p
]

| log β|p + 1

]
,

and hence { (N0)p

| log β|p , 0 < β < 1} is uniformly integrable. Therefore, as β → 0, (fix ε > 0

and then take ε ↓ 0)
E0[(N0)q]

| log β|q →
(

2

λ

)q

and
E0[N q]

| log β|q →
(

2

λ

)q
,

for all 0 < q ≤ p.

(b) The proof for (b) follows as in (a) with the following modifications. Interchange N0

with N1 in (5.18). Use N∗1 (ε) instead of N∗0 (ε). For the convergence of moments we need

E1[(logPi(X1))p+1] <∞ for i = 0, 1.
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Table 5.2 shows that the asymptotics for E1[N ] and E0[N ] match with simulations

well at low probability of error. In the table P0 ∼ B(8, 0.2) and P1 ∼ B(8, 0.5), where

B(n, p) represents Binomial distribution with n as the number of trials and p as success

probability in each trial. Also λ = 1.2078. We use the KT-estimator with Arithmetic

Encoder, which is considered in Section 5.3.2, as the universal source code.

Hyp = i Pi(Hj), j 6= i Ei[N ] Theory Ei[N ] Simln.

0 3e− 4 47.6 52.2

0 5e− 6 82.8 85.4

0 1e− 7 124.2 126.3

1 5e− 4 17.5 21.2

1 4e− 6 25.4 27.7

1 2e− 7 38.1 37.6

Table 5.2: Comparison of Ei[N ] obtained via analysis and simulation

A modification of our test is to take into account the available information about

the number of samples under H0 (which is not dependent upon P1 in our test) and the

fact that the expected drift under H1 is greater than that under H0 if P1 ∈ C, i.e.,

E1[N ] is smaller than E0[N ]. Under H0, if the universal estimation is proper we have

N ∼ N0 = | log β|/(λ/2) with high probability. In the ideal case if α is same as β, we

can add the following criteria into the test: decide H0 if the current number of samples

n is greater than N0; if N is much smaller than N0 and the decision rule decides H0 we

can confirm that it is a miss-detection and make the test not to stop at that point. This

improvement will reduce the probability of miss-detection and the mean sample size. In

order to improve the above test further if we allow estimation error εn at time n (εn can

be calculated if we know the pointwise redundancy rate of the universal code) the test

becomes as provided in Table 5.3:

Table 5.4 shows the performance comparison of the modified test with that of (5.2).

The setup is same as in Table 5.2 with λ = 2.5754. Since the approximations for N0 holds
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Stopping rule Decision

1 n > N0 + εn H0

2 N << N0 − εN and declare H0 Miss-detection. Do not stop the test

3 N0 − εN ≤ N ≤ N0 + εN Decide according to crossing thresholds

Table 5.3: Modified test for finite alphabet case

only when the probability of error is very low, we are interested in low error regime.

Hyp = i Pi(Hj), j 6= i Ei[N ] Original Ei[N ] Modified

0 4e− 3 18.82 14.27

0 2e− 4 27.53 21.92

0 1e− 7 55.24 46.15

1 6e− 3 15.72 12.08

1 3e− 4 25.52 18.98

1 2e− 7 50.31 39.12

Table 5.4: Comparison of Ei[N ] between the modified test and original test (5.2)

5.2 Continuous Alphabet

The above test can be extended to continuous alphabet sources. Now, in (5.2) Pi is

replaced by fi, i = 0, 1. Since we do not know f1, we would need an estimate of Zn
∆
=

∑n
k=1 log f1(Xk). If E[log f1(X1)] < ∞, then by strong law of large numbers, Zn/n is

a.s. close to E[log f1(X1)] for all large n. Thus, if we have an estimate of E[log f1(X1)]

we will be able to replace Zn as in (5.2). In the following we get a universal estimate of

E[log f1(X1)]
∆
= −h(X1), where h is the differential entropy of X1, via the universal data

compression algorithms.

First we quantize Xi via a uniform quantizer with a quantization step ∆ > 0. Let the

quantized observations be X∆
i and the quantized vector X∆

1 , . . . , X
∆
n be X∆

1:n. We know
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that H(X∆
1 )+log ∆→ h(X1) as ∆→ 0 ([11]). Given i.i.d. observations X∆

1 , X
∆
2 , . . . , X

∆
n ,

its code length for a good universal lossless coding algorithm approximates nH(X∆
1 ) as n

increases. This idea gives rise to the following modification to (5.3),

W̃n = −Ln(X∆
1:n)− n log ∆−

n∑

k=1

log f0(Xk)− n
λ

2
(5.22)

and as for the finite alphabet case, to get some performance guarantee, we restrict f1 to

a class of densities,

C = {f1 : D(f1||f0) ≥ λ}. (5.23)

Let the divergence after quantization be D(f∆
1 ||f∆

0 ), f∆
i being the probability mass

function after quantizing fi. Then by data-processing inequality ([11]) D(f1||f0) ≥
D(f∆

1 ||f∆
0 ). When ∆ → 0 the lower bound is asymptotically tight and this suggests

choosing λ based on the divergence between the continuous distributions before quanti-

zation.

The following comments justify the above quantization.

1. It is known that uniform scalar quantization with variable-length coding of n suc-

cessive quantizer outputs achieves the optimal operational distortion rate function

for quantization at high rates ([16]).

2. We can also consider an adaptive uniform quantizer, which is changing at each

time step ([65]). But this makes the scalar quantized observations dependent (due

to learning from the available data at that time) and non-identically distributed.

Due to this the universal codelength function is unable to learn the underlying

distribution.

3. If we have non-uniform partitions with width ∆j at jth bin and let the probability

mass at this bin be pj, then likelihood sum in (5.22) becomes,

−Ln(X∆
1:n)− n

∑

j

pj log ∆j − log f0(Xn
1 )− nλ

2
.

Thus non-uniform quantizers require knowledge of pj which is not available under

H1.
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4. Assuming we have i.i.d observations, uniform quantization has another advantage:

(5.22) can be written as

−Ln(X∆
1:n)−

n∑

k=1

log(f0(Xk)∆)− nλ
2
.

Under the high rate assumption, f0(Xk)∆ ≈ f∆
i (X∆

k ). Thus, W̃n depends upon the

quantized observations only and we do not need to store the original observations.

5. The range of the quantization can be fixed by considering only those f1’s whose tail

probabilities are less than a small specific value at a fixed boundary and use these

boundaries as range.

We could possibly approximate differential entropy h(X1) by universal lossy coding

algorithms ([6], [21]). But these algorithms require a large number of samples (more than

1000) to provide a reasonable approximation. In our application we are interested in

minimising the expected number of samples in a sequential setup. Thus, we found the

algorithms in [6] and [21] inappropriate for our applications.

5.2.1 LZSLRT (Lempel-Ziv Sequential Likelihood Ratio Test)

In the following in (5.22) we use Lempel-Ziv incremental parsing technique LZ78 ([76]),

which is a well known efficient universal source coding algorithm. We call this algorithm

LZSLRT. LZ78 can be summarised in the following steps.

1. Parse the input string into phrases where each phrase is the shortest phrase not seen

earlier.

2. Encode each phrase by giving the location of the prefix of the phrase and the value

of the latest symbol in the phrase.

Let t be the number of phrases after parsing and |A| be the alphabet size of the

quantized alphabet. The codelength for LZ78 is

Ln(X∆
1:n) =

t∑

i=1

dlog i|A|e. (5.24)
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At low n, which is of interest in sequential detection, the approximation for the log

likelihood function via LZSLRT, using (5.24) is usually poor as universal coding requires

a few samples to learn the source. Hence we add a correction term nεn, in the likelihood

sum in (5.22), where εn is the redundancy for universal lossless codelength function. It is

shown in [26], that

Ln(X∆
1:n) ≤ nH̃n(X∆

1 ) + nεn, (5.25)

where

εn = C

(
1

log n
+

log log n

n
+

log log n

log n

)
.

Here C is a constant which depends on the size of the quantized alphabet and H̃n(X∆
1 )

is the empirical entropy, which is the entropy calculated using the empirical distribution

of samples upto time n. Thus the test statistic W̃LZ
n , is

W̃LZ
n = −

t∑

i=1

dlog i|A|e−nC
(

1

log n
+

log log n

n
+

log log n

log n

)
−n log ∆−

n∑

k=1

log f0(Xk)−n
λ

2
.

To obtain t, the sequence X∆
1:n needs to be parsed through the LZ78 encoder.

5.2.2 KTSLRT (Krichevsky-Trofimov Sequential Likelihood Ra-

tio Test)

In this section we propose KTSLRT for i.i.d. sources. The codelength function Ln in

(5.22) now comes from the combined use of KT (Krichevsky-Trofimov [28]) estimator of

the distribution of quantized source and the Arithmetic Encoder ([11]) (i.e., Arithmetic

Encoder needs the distribution of Xn which we obtain in this test from the KT-estimator).

We will show that the test obtained via this universal code often substantially outperforms

LZSLRT.

KT-estimator for a finite alphabet source is defined as,

Pc(x
n
1 ) =

n∏

t=1

v(xt/x
t−1
1 ) + 1

2

t− 1 + |A|
2

, (5.26)

where v(i/xt−1
1 ) denotes the number of occurrences of the symbol i in xt−1

1 . It is known

([11]) that the coding redundancy of the Arithmetic Encoder is smaller than 2 bits,
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i.e., if Pc(x
n
1 ) is the coding distribution used in the Arithmetic Encoder then Ln(xn1 ) <

− logPc(x
n
1 ) + 2. In our test we actually use − logPc(x

n
1 ) + 2 as the code length function

and do not need to implement the Arithmetic Encoder. This is an advantage over the

scheme LZSLRT presented above.

It is proved in [12] that universal codes defined by the KT-estimator with the Arith-

metic Encoder are nearly optimal for i.i.d. finite alphabet sources.

Writing (5.26) recursively, (5.22) can be modified as

W̃KT
n = W̃KT

n−1 + log

(
v(X∆

n /X
∆n−1
1 ) + 1

2
+ S

t− 1 + |A|
2

)
− log ∆− log f0(Xn)− λ

2
,

where S is a scalar constant whose value greatly influences the performance. The default

value of S is zero.

5.3 Performance Comparison

We compare the performance of LZSLRT to that of SPRT and GLR-Lai (Section 3.5.1)

via simulations in Section 5.3.1. Performance of KTSLRT through simulations and com-

parison with LZSLRT are provided in Section 5.3.2. We also compare with some other

estimators available in literature. It has been observed from our initial experiments that

due to the difference in the expected drift of likelihood ratio process under H1 and H0,

some algorithms perform better under one hypothesis and worse under the other hypoth-

esis. Hence instead of plotting E1[N ] versus PMD and E0[N ] versus PFA separately, we

plot EDD
∆
= 0.5E1[N ] + 0.5E0[N ] versus PE

∆
= 0.5PFA + 0.5PMD. We use an eight bit

uniform quantizer.

5.3.1 LZSLRT

Table 5.5 and Table 5.6 present numerical comparisons for Gaussian and Pareto distribu-

tions respectively. The experimental set up for Table 5.5 is, f0 ∼ N (0, 5) and f1 ∼ N (3, 5).

∆ = 0.3125. The setup for Table 5.6 is, f0 ∼ P(10, 2) and f1 ∼ P(3, 2), where P(K,Xm)
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EDD PE = 0.05 PE = 0.01 PE = 0.005

SPRT 3.21 4.59 6.29

GLR-Lai 5.0 8.53 12.83

LZSLRT 12.95 15.19 19.29

Table 5.5: Comparison among SPRT, GLR-Lai and LZSLRT for Gaussian Distrbution

EDD PE = 0.05 PE = 0.01 PE = 0.005

SPRT 7.45 10.86 18.23

GLR-Lai 18.21 29.65 33.42

LZSLRT 16.96 28.31 31.48

Table 5.6: Comparison among SPRT, GLR-Lai and LZSLRT for Pareto Distrbution.

is the Pareto density function with K and Xm as the shape and scale parameter of the

distribution. We observe that although LZSLRT performs worse for Gaussian distribution

(GLR-Lai is nearly optimal for exponential family), it works better than GLR-Lai for the

Pareto Distribution.

5.3.2 KTSLRT

Figure 5.1 shows the comparison of LZSLRT with KTSLRT when f1 ∼ N (0, 5) and

f0 ∼ N (0, 1). We observe that LZSLRT and KTSLRT with S = 0 (the default case) are

not able to give PE less than 0.3 and 0.23 respectively, although KTSLRT with S = 1

provides much better performance. We have found in our simulations with other data

also that KTSLRT with S = 0 performs much worse than with S = 1 and hence in the

following we consider KTSLRT with S = 1 only. Next we provide comparison for two

heavy tail distributions.

Figure 5.2 displays the Lognormal distribution comparison when f1 ∼ lnN (3, 3), f0 ∼
lnN (0, 3) and lnN (a, b) indicates the density function of Lognormal distribution with the

underlying Gaussian distribution N (a, b). It can be observed that PE less than 0.1 is not

achievable by LZSLRT. KTSLRT with S = 1 provides a good performance.
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Figure 5.1: Comparison between KTSLRT and LZSLRT for Gaussian Distribution.
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Figure 5.2: Comparison between KTSLRT and LZSLRT for Lognormal Distribution.

Figure 5.3 shows the results for Pareto distribution. Here f1 ∼ P(3, 2), f0 ∼ P(10, 2)

and support set (2, 10). We observe that KTSLRT with S = 1 and LZSLRT have com-

parable performance.

It is observed by us that as S increases, till a particular value the performance of KT-

SLRT improves and afterwards it starts to deteriorate. For all the examples we considered,
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Figure 5.3: Comparison between KTSLRT and LZSLRT for Pareto Distribution.

S = 1 provides good performance.

In Figure 5.4 we compare KTSLRT with sequential tests in which −nĥn replaces
∑n

k=1 log f1(Xk) where ĥn is an estimate of the differential entropy and with a test defined

by replacing f1 by a density estimator f̂n.
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Figure 5.4: Comparison among KTSLRT, universal sequential tests using 1NN differential

entropy estimator and that using Kernel density estimator.
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It is shown in [65] that 1NN (1st Nearest Neighbourhood) differential entropy estimator

performs better than other differential entropy estimators where 1-NN differential entropy

estimator is

ĥn =
1

n

n∑

i=1

log ρ(i) + log(n− 1) + γ + 1,

and ρ(i)
∆
= minj:1≤j≤n,j 6=i ||Xi−Xj|| and γ is the Euler-Mascheroni constant (=0.5772...).

There are many density estimators available ([54]). We use the Gaussian example in

Figure 5.1 for comparison. For Gaussian distributions, a Kernel density estimator is a

good choice as optimal expressions are available for the parameters in the Kernel density

estimators ([54]). The Kernel density estimator at a point z is

f̂n(z) =
1

nh

n∑

i=1

K

(
z −Xi

h

)
,

where K is the kernel and h > 0 is a smoothing parameter called the bandwidth. If

Gaussian kernel is used and the underlying density being estimated is Gaussian then it

can be shown that the optimal choice for h is ([54]) (4σ̂5/3n)
1/5

, where σ̂ is the standard

deviation of the samples.

We provide the comparison of KTSLRT with the above two schemes in Figure 5.4.

We find that KTSLRT with S = 1 performs the best.

Next we provide comparison with the asymptotically optimal universal fixed sample

size test for finite alphabet sources. This test is called Hoeffding test ([19], [33], [60])

and it is optimal in terms of error exponents (5.6) for i.i.d. sources over a finite alphabet.

The decision rule of Hoeffding test, δFSS = I{D(Γn||P0) ≥ η}, where Γn(x) is the type

of X1, . . . , Xn, = { 1
n

∑N
i=1 I{Xi = x}, x ∈ X}, where X is the source alphabet, N is the

cardinality of X and η > 0 is an appropriate threshold. From [60, Theorem III.2],

under P0, nD(Γn||P0)
d−−−→

n→∞
1

2
χ2
N−1,

under P1,
√
n
(
D(Γn||P0)−D(P1||P0)

) d−−−→
n→∞

N (0, σ2
1), (5.27)

where σ2
1 = V arP1

[
log P1(X1)

P0(X1)

]
and χ2

N−1 is the Chi-Squared distribution with N − 1
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degrees of freedom. From the above two approximations, number of samples, n to achieve

PFA and PMD can be computed theoretically as a solution of

2nD(P1||P0) + 2
√
nF−1
N (PMD)− F−1

χ (1− PFA) = 0 ,

where F−1
N and F−1

χ denote inverse cdf’s of the above Gaussian and Chi-Squared distri-

butions.

Since this is a discrete alphabet case, we use (5.3) with Ln(Xn
1 ) as the codelength

function of the universal code, KT-estimator with Arithmetic Encoder. Figure 5.5 shows

comparison of this test with the Hoeffding test. Here P0 ∼ Be(0.2) and P1 ∼ Be(0.5)

and Be(p) indicates the Bernoulli distribution with parameter p. Figure 5.6 provides

the comparison when P0 ∼ B(8, 0.2) and P1 ∼ B(8, 0.5), where B(n, p) represents the

Binomial distribution with n trials and p as the success probability in each trial. It can be

seen that our test outperforms Hoeffding test in both these examples in terms of average

number of samples.
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Figure 5.5: Comparison between Hoeffding test and our discrete alphabet test (5.3) for

Bernoulli distribution
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Figure 5.6: Comparison between Hoeffding test and our discrete alphabet test (5.3) for

Binomial distribution

5.4 Decentralized Detection

Motivated by the satisfactory performance of a single node case, we extend LZSLRT and

KTSLRT to the decentralized setup in Chapter 3. In this setup we consider a CR network

with one fusion center (FC) and L CRs. The CRs use local observations to make local

decisions about the presence of a primary and transmit them to the FC. The FC makes

the final decision based on the local decisions it received.

Let Xk,l be the observation made at CR l at time k. We assume that {Xk,l, k ≥ 1}
are i.i.d. and that the observations are independent across CRs. We will denote by f1,l

and f0,l the densities of Xk,l under H1 and H0 respectively. Using the detection algorithm

based on {Xn,l, n ≤ k} the local node l transmits Yk,l to the fusion node at time k. We

assume a multiple-access channel (MAC) between CRs and FC in which the FC receives

Yk, a coherent superposition of the CR transmissions: Yk =
∑L

l=1 Yk,l + Zk, where {Zk}
is i.i.d., zero mean Gaussian receiver noise with variance σ2 (for our algorithms Gaussian

assumption is not required, but its distribution is assumed to be known). FC observes

Yk, runs a decision rule and decides upon the hypothesis.

Now our assumptions are that at local nodes, f0,l is known but f1,l is not known.
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The variance σ2 of Zk is known to the FC. Thus we use LZSLRT at each local node

and Wald’s SPRT at the fusion center (we call it LZSLRT-SPRT). Similarly we can use

KTSLRT at each CR and SPRT at the fusion center and call it KTSLRT-SPRT. In both

the cases whenever at a local CR node, the stopping time is reached, it transmits b1 if its

decision is H1; otherwise b0. At the FC we have SPRT for the binary hypothesis testing

of two densities g1 (density of Zk + µ1) and g0 (density of Zk − µ0), where µ0 and µ1 are

design parameters. At the FC, the Log Likelihood Ratio Process (LLR) crosses upper

threshold under H1 when a sufficient number of local nodes (denoted by I, to be specified

appropriately) transmit b1. Thus µ1 = b1I and similarly µ0 = b0I.

In the following we compare the performance of LZSLRT-SPRT, KTSLRT-SPRT and

DualSPRT developed in Chapter 3 which runs SPRT at CRs and FC and hence requires

knowledge of f1,l at CR l. We choose b1 = 1, b0 = −1, I = 2, L = 5 and Zk ∼ N (0, 1) and

assume same SNR for all the CRs to reduce the complexity of simulations. We use an eight

bit quantizer in all these experiments. In Figure 5.7 f0,l ∼ N (0, 1) and f1,l ∼ N (0, 5), for

1 ≤ l ≤ L. The setup for Figure 5.8 is f0,l ∼ P(10, 2) and f0,l ∼ P(3, 2), for 1 ≤ l ≤ L.

FC thresholds are chosen appropriately with the available expressions for SPRT. In both

the cases KTSLRT-SPRT performs better than LZSLRT-SPRT.

5.5 Conclusions

This chapter covers a nonparametric algorithm for spectrum sensing. A universal se-

quential testing spectrum sensing framework is proposed, where the CRs do not have

any knowledge about the distribution (not even parametric family) when the primary

transmits. This setup covers uncertainty in the SNR at CR receivers and fading chan-

nels between primary and CR. We propose a simple test using universal lossless codes.

We studied asymptotic properties of stopping time and probability of error of the pro-

posed test. Our algorithm can be used for continuous and discrete distributions. We

have compared our algorithms when the lossless codes are Lempel-Ziv codes and KT-

estimator with Arithmetic Encoder. Numerical simulations show that KT-estimator with

Arithmetic Encoder is better than the nonparametric test using density estimator and
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Figure 5.7: Comparison among DualSPRT, KTSLRT-SPRT and LZSLRT-SPRT for

Gaussian Distribution
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Figure 5.8: Comparison among DualSPRT, KTSLRT-SPRT and LZSLRT-SPRT for

Pareto Distribution

that using differential entropy estimator. Finally we have extended these algorithms to

distributed cooperative setup.



Chapter 6

Decentralized Multihypothesis

Sequential Tests

In this chapter we provide algorithms for multihypothesis decentralized sequential de-

tection. This framework will be useful when we want to isolate the primary user who

is transmitting among a set of primary users. Only one primary user is assumed to be

transmitting in the band of interest.

This chapter is organised as follows. Section 6.1 presents two new algorithms DMSLRT-

1 and DMSLRT-2. Performance comparisons are also given in the same section. Section

6.2 provides theoretical analysis of DMSLRT-1. Section 6.3 concludes the chapter.

Notation Meaning

M Number of hypotheses

Hi Hypothesis i

fml p.d.f. of observation Xk,l at CR l under hypothesis Hm.

W i,j
k,l Test statistic at CR l, time k w.r.t Hi vs Hj

F i,j
k Test statistic at FC, time k w.r.t. Hi vs Hj

Table 6.1: List of important notations specific to this chapter

80
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6.1 Algorithms for Multihypothesis Decentralized Se-

quential hypothesis testing

Consider the problem of decentralized sequential multihypothesis testing with M > 2

hypothesis and with no feedback from the fusion center. Let the hypotheses be Hm :

Xk,l ∼ fml , m = 0, . . . ,M − 1 where l is the sensor index and k is the time index.

In [56] decentralized multihypothesis sequential testing problem is considered. The

authors use a test at each local node, which is provided in [57] and at the fusion center they

use a test loosely based on a method in [55]. Here at the local node the observation process

is continued up to the rejection of all except one hypothesis and the remaining hypothesis

is accepted. We have found through numerical experiments that this distributed test

requires a very large number of samples, at the usual operating probabilities of errors in

Cognitive Radio systems, to make a decision. This motivates us to provide simple and

practically relevant distributed algorithms for multihypothesis sequential testing. Next

we consider the first proposed algorithm DMSLRT-1

6.1.1 DMSLRT-1

This algorithm is motivated from Test-D1 in [57] and for ease of reference we call this

modification as MSLRT-1 (Multihypothesis Sequential Lilekihood Ratio Test-1). The

test, MSLRT-1, is as follows. The test statistic of local node l at time k is given by

W i,j
n,l = max

(
W i,j
n−1,l + log

f il (Xn,l)

f jl (Xn,l)
, 0

)
,W i,j

0,l = 0, 0 ≤ i, j ≤M − 1, i 6= j. (6.1)

The stopping time at local node l is,

Nl = inf{n : W i,j
n,l > A for all j 6= i and some i}, (6.2)

or Nl = inf{n : max
i

min
j 6=i

W i,j
n,l > A},



Chapter 6. Decentralized Multihypothesis Sequential Tests 82

where A is an appropriately chosen constant. At time Nl, node l makes the decision dl = i

where i is given in (6.2).

The modification compared to Test-D1 is by using a reflected random walk in (6.1)

instead of random walk in Test-D1. We use this modified test at the local nodes. Local

node l transmits a value bi, when dl = i, to the fusion center. Hence the transmitting

values of each local node would be {b0, . . . , bM−1}, where bi’s are appropriately chosen.

Using physical layer fusion in the current setup would cause a lot of confusion. Thus the

nodes transmit data using TDMA. We assume that the fusion center has i.i.d. zero mean

Gaussian noise Zk with variance σ2. Although any noise distribution can be assumed, we

use Gaussian for the ease of the explanation of the algorithm. At the fusion center we

run another multihypothesis sequential test of the form (6.2) with hypothesis Gm : Yk ∼
fmFC = N (bm, σ

2), m = 0, . . . ,M − 1. Define, for i, j,= 0, . . . ,M − 1

F i,j
n = max

(
F i,j
n−1 + log

f iFC(Yn)

f jFC(Yn)
, 0

)
. (6.3)

The stopping time at the fusion center is,

N = inf{n : F i,j
n > B for all j 6= i and some i}, (6.4)

where B is appropriately chosen. At time N , the fusion center selects hypothesis Gi where

i is given in (6.4) and decides Hi in the decentralized setup. The thresholds A and B can

be different for different hypothesis to enable different PFA for different hypothesis. We

call this decentralized scheme as DMSLRT-1 (Decentralized Multihypothesis Sequential

Lilekihood Ratio Test-1).

Some comments about the above test are listed bellow.

1. The expected drift of the reflected random walk (6.1) of MSLRT-1 when the true

hypothesis is Hi is

Ei

[
log

fkl (X1,l)

f jl (X1,l)

]
= D(f il ||f jl )−D(f il ||fkl ). (6.5)
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This gives

min
j 6=k

Ei

[
log

fkl (X1,l)

f jl (X1,l)

]
=





−D(f il ||fkl ) < 0, when k 6= i and j = i,

D(f il ||f ĵl ) > 0, when k = i and

ĵ = argminj 6=iD(f il ||f jl ).

(6.6)

From the stopping time expression (6.2) it is clear that we are looking for hypothesis

which has positive drift with respect to all other hypothesis in the Log Likelihood

Ratio process. Now from (6.6) it can be seen that the only LLR processes of the

true hypothesis have expected drift as positive for all the cases. This justifies the

proposed algorithm.

2. From Chapter 4 we know that using reflected random walks instead of normal

random walk has advantage over the expected delay and the increase in false alarm

probability by doing so can be taken cared of in the properly designed fusion center

test. The same idea has been utilised here and performance comparisons given below

shows the advantage.

We demonstrate the effectiveness of the proposed algorithm through a Gaussian mean

change example. The number of hypothesis, M is 5 and the number of local nodes L is

also 5. Fusion center noise has variance 1. Under hypothesis Hm, Xk,l ∼ N (m, 1), m =

0, . . . ,M − 1. As there is not much literature on decentralized multihypothesis sequential

testing with no feedback from fusion center (except [56]), we compare our algorithm to

the decentralized schemes created by a combinations of existing single node methods. We

note that the distributed algorithm in [56] in our setup provides a very large expected

detection delay. In the local node test of the distributed algorithm in [56], rejection times

of each hypothesis are found by calculating the likelihood ratio of all other hypothesis

with respect to the hypothesis under consideration and comparing with a positive upper

threshold. The test stops when all but one of the hypothesis are rejected. But it can

happen that there is a negative drift in any of the likelihood ratios with respect to more

than one hypothesis and this makes the rejection time of more than one hypothesis to

be very large. Thus this local node test, though it is theoretically worthy to consider,
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requires a large average number of samples to stop. We believe that this can be the reason

for a large expected delay in the algorithm in [56].

For making combinations for comparing distributed algorithms we have considered

the following tests at local nodes and fusion center: Test-D1 and Test-D2 of [57], Test1

and Test2 of [55], and MSPRT [13] (with equal prior probabilities). Among them we

found that the combination of Test-D1 and our MSLRT-1 outperforms other combina-

tions. Hence in Figure 6.1 we plot only different configurations of Test-D1 and MSLRT-1.

Here DMSLRT-1 indicates using Test-D1 at both the local nodes and the fusion center;

MSLRT-1:Test-D1 is using MSLRT-1 at local nodes and Test-D1 at the fusion center

and Test-D1:MSLRT-1 uses the other way. EDD indicates E[τ |Hi] when τ is the stopping

time of the test under consideration and Hi is the true hypothesis. PFA is the probability

of false alarm in rejecting the true hypothesis, i.e.,

PFA =
M−1∑

j=0
j 6=i

Pi(accept Hj) when true hypothesis is Hi.

The performance is almost same under different hypothesis. Hence we show the plot of

EDD vs PFA only for the true hypothesis taken as H3. bi = i+ 1, 0 ≤ i ≤M − 1. We use

TDMA. DMSLRT-1, using MSLRT-1 at the local nodes as well as the fusion center gives

the best performance.

6.1.2 DMSLRT-2

It has been explained in Section 4.1 that the main advantage of using SPRT-CSPRT algo-

rithm is the reduction in false alarms caused by Gaussian noise before first transmission

from the local nodes. Here we propose a technique for decentralized multihypothesis se-

quential testing to reduce such false alarms. Essentially we are trying to minimise the false

alarms caused by a process which is not a part of the hypotheses (in our case Gaussian

noise at the fusion center before the first local node transmission is not in the hypotheses

{Gm, 0 ≤ m ≤M − 1}).
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Figure 6.1: Comparison among different Multihypothesis schemes

Fusion center test statistic F i,j
n is redefined as follows,

F i,j
n = F̂ i,0

n − F̂ j,0
n , where F̂ i,0

n = max

(
F̂ i,0
n−1 + log

f iFC(Yn)

fZ(Yn)
, 0

)
. (6.7)

Here fZ is the pdf of Gaussian noise and assume that it has mean zero. From this

assumption and from the above expression of F̂ i,0
n , the expected drift of F̂ i,0

n is positive

only when E[Yn] > bi/2. Recall that bi is the transmitted value when the local node

decision is Hi and is same as the expected value under hypothesis Gi at the fusion center.

Now by selecting bi’s as positive, before first transmission from local nodes, expected drift

of F̂ i,0
n is nearly zero for 0 ≤ i ≤M − 1 which makes the average value of F i,j

n negligible.

We have used MSLRT-1 at the local nodes and the above test at the fusion center.

This decentralized test is called DMSLRT-2. DMSLRT-2 is compared against DMSLRT-

1 in the following setup. We assume there are four primary users with SNR’s -10 dB,

-6 dB, 0 dB and 6 dB. If the underlying distributions are Gaussian then these SNR’s

correspond to mean changes of 0.3162, 0.7943, 1 and 2 respectively. With Gaussian noise

as N (0, 1) (no primary transmission, H0), hypotheses are Hi : N (m, 1), 1 ≤ i ≤ 4,m =

2, 1, 0.7943, 0.3162 respectively. Now primary user with SNR -10dB (H4) use the channel.
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Figure 6.2: Comparison between MDSLRT-1 and MDSLRT-2

Number of local nodes is five. Figure 6.2 shows the comparison between DMSLRT-2 and

DMSLRT-1. It can be seen that DMSLRT-2 performs much better than DMSLRT-1 for

this example. This inference has been verified by simulations for different distributions.

6.2 Analysis of DMSLRT-1

Here we assume that true hypothesis is Hi and we focuss on node l.

6.2.1 Analysis of MSLRT-1

EDD Analysis

Expected value of stopping time at local node l under true hypothesis Hi can be approx-

imated as

El
DD = Ei[Nl] ≈

A

minj 6=iD(f il ||f jl )
(6.8)

This is because of the fact that among the LLR processes of Hi with respect to other

hypothesis, the dominant event according to (6.1) is the one which has minimum positive
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expected drift. In such a scenario with reflected random walk, we approximate it as a

random walk with positive drift crossing positive threshold.

This approximation does not taken into account the overshoot occurred (W i,j
Nl,l
− A)

at stopping time Nl. Now we apply nonlinear renewal theory to take care this effect. An

important theorem from nonlinear renewal theory (Theorem 4.1 in [67]) says that under

mild conditions the limiting distribution of the excess of a random walk over a fixed

threshold does not change by the addition of a slowly changing nonlinear term (slowly

changing sense is defined in [67]). The essential idea is to rewrite the stopping criteria as

a random walk crossing a positive threshold with a nonlinear slowly varying term. For

the reflected random walk in (6.1) (CUSUM test with the time of change as the starting

time) with the help of Theorem 2 in [58] we can derive the following expression

Ei[Nl] ≈
A+ X i,̂j

l + Bi,̂jl
D(f il ||f ĵl )

, (6.9)

where X i,̂j
l =

Ei[(R
i,̂j
1,l)

2]

2Ei[(R
i,̂j
1,l)

2]
−
∞∑

n=1

n−1EiS
− i,̂j
n,l and Bi,̂jl = −

∞∑

n=1

n−1EiS
− i,̂j
n,l

Ri,̂j
k,l = log(f il (Xk,l)/f

ĵ
l (Xk,l)) and S − i,̂jn,l = −min(0,

n∑

k=1

Ri,̂j
k,l). ĵ is defined in (6.6).

Table 6.2 provides the comparison between simulation and analysis. The simulation

setup is as follows: Under Hm, Xk,l ∼ N (m, 1), m = 0, . . . , 4 and H3 is assumed to be

the true hypothesis.

Threshold (A) EDD Simln. EDD Anal

100 157.54 141.61

120 186.98 169.34

140 216.31 197.07

Table 6.2: MSLRT-1: Comparison of EDD obtained via simulation and analysis.
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PFA Analysis

P l
FA in multihypothesis case is defined as P l

FA =
∑M−1

j 6=i Pi(decide Hj at node l). We look

for the dominant events in {W k,j
n,l , k 6= i} in order to simplify the analysis. Assume that

the dominant event in {W k,j
n,l , k 6= i} is when the expected drift is most negative (This

assumption is justified by the fact that we are only interested in minj 6=kW
k,j
n,l , k 6= i from

(6.2)). According to (6.6) the most negative expected drift occurs when j = i for k 6= i.

Let us define a local stopping time Nk,j
l for 0 ≤ k, j ≤M − 1, k 6= j as

Nk,j
l = inf{n : W k,j

n,l > A}.

Under true hypothesis Hi and due to the fact that W k,i
n,l is a reflected random walk

Nk,j
l , k 6= i is asymptotically exponentially distributed as mentioned in Section 4.4.1 and

the mean of it can be calculated using renewal theory arguments as explained in the same

Section. Now P l
FA at local node l is given as

P l
FA ≈ P (min

k 6=i
N k,i
l < N i,̂j

l ). (6.10)

We find this probability by assuming independence of Nk,i
l over different hypothesis

k’s, which is actually not true. However this assumption simplifies analysis as minimum

of independent exponential random variables is also exponential and its rate is given by

the sum of the rates of individual random variables. Table 6.3 provides the comparison

between simulation and analysis. Simulation setup is same as that used for Table 6.2. We

see that the error in the approximate analysis is quite large but it is of the same order.

Obviously, a more accurate analysis will be very helpful.

6.2.2 EDD analysis of Decentralized MSLRT-1 (DMSLRT-1)

It should be noted that fusion center receives non i.i.d. observations. The following is a

simple analysis of this complicated scenario. The expectation of fusion center stopping
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Threshold (A) P l
FA Simln. P l

FA Anal

8 0.0138 0.0296

10 0.0043 0.0093

20 5.00E − 5 1.81E − 5

Table 6.3: MSLRT-1: Comparison of PFA obtained via simulation and analysis.

time can be approximated as

EDD = Ei[max
l
Nl] + Ei[NFC ], (6.11)

where NFC is the time for FC to cross threshold assuming all the local nodes start trans-

mitting the true hypothesis. Even though this is a rough approximation, simulations show

that for high FC threshold (B) values, this approximation is quite accurate. The first

term in the approximation is calculated by assuming Gaussian distribution for Nl where

Nl is computed for a random walk crossing a positive threshold whose positive drift is the

minimum drift of random walks {W i,j
n,l , 1 ≤ j ≤M − 1, 6= i} with drifts D(f il ||f ĵl ).

Table 6.4 provides the comparison between simulation and analysis. The simulation

setup is same as that of Figure 6.1: Under Hm, Xk,l ∼ N (m, 1), m = 0, . . . , 4, L = 5 and

fusion center noise has variance 1. H3 is assumed to be the true hypothesis.

A B EDD Simln. EDD Anal

10 80 116.79 133.63

10 90 144.04 147.49

10 100 163.54 161.36

Table 6.4: DMSLRT-1: Comparison of EDD obtained via simulation and analysis.

PFA analysis for DMSLRT-1 is not provided since the discrepancy between theory and

simulations of MSLRT-1 PFA analysis accumulate and leads to a considerable difference.
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6.3 Conclusions

We provide two implementable decentralized multihypothesis sequential tests in this chap-

ter. The first one (DMSLRT-1 ) is motivated from the reflected random walk argument

in Chapter 4. The second one ((DMSLRT-2 )) tries to minimise the false alarms caused

by the fusion center noise before first transmission from local nodes. This was a major

source of false alarm and therefore the algorithms improves the performance much. The-

oretical analysis of MSLRT-1 is provided then and has then extended to EDD analysis

for DMSLRT-1



Chapter 7

Conclusions and Future Directions

We have considered the problem of cooperative spectrum sensing in Cognitive Radios.

This thesis is aimed at developing fast algorithms satisfying reliability constraints. Our

algorithms are based on decentralized sequential hypothesis testing. The primary appli-

cations of the proposed algorithms are in fast detection of idle TV bands and in quickest

detection of unoccupied spectrum in slotted primary user transmission systems (e.g.,

cellular systems). We started with developing DualSPRT, a decentralized sequential hy-

pothesis test. In this algorithm, each CR sequentially senses the spectrum and then sends

its local decision to the fusion center, who further processes this information sequentially

to make the final decision. This test is based upon asynchronous transmissions from

SUs and considers the fusion center noise also. Theoretical study of DualSPRT is also

presented. Asymptotic properties of DualSPRT are also explored and it is found to be

asymptotically optimal with respect to the optimal centralized test. Next we modified

DualSPRT to develop GLR-SPRT algorithm which can work with imprecise estimates of

the channel gains and can be further modified to take care of noise power uncertainty as

well. This was required, as in Cognitive Radio setup it is not realistic to assume that each

secondary user will have the knowledge of the received primary signal power.

We have found that although DualSPRT is asymptotically optimal, the fusion center

test can be modified further to have more control over the test and better performance

at realistic error probabilities in CR setup. The proposed algorithm, SPRT-CSPRT, is

91
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based on the idea that the fusion center decision criteria could be modelled as two sided

composite change detection problem. SPRT-CSPRT uses CUSUM algorithm’s statistic.

It is also found that this algorithm’s design is more handy. Theoretical analysis and

extensions to unknown SNR are provided. Numerical experiments show that SPRT-

CSPRT performs as well as an asymptotic order-2 optimal algorithm without fusion center

noise, proposed in literature.

SNR uncertainty, with almost no partial information about it, is also addressed. The

problem is framed as a universal sequential hypothesis testing. For this, we have used

universal lossless source codes for learning the underlying distribution. Algorithm is first

proposed for discrete alphabet and almost sure finiteness of the stopping time is proved.

Asymptotic properties of probability of error and moment convergence of stopping time are

studied. Later it is extended to continuous alphabet with the use of uniform quantization

and we have found that adaptive quantizers are not helpful in our setup. We have used

Lempel-Ziv code and KT-estimator with Arithmetic Encoder as universal lossless codes.

Performances are compared each other and are also compared with the tests using various

other estimators. It is found that KT-estimator with Arithmetic Encoder always performs

the best. Finally a decentralized version is also proposed.

When the problem is to identify the primary user apart from sensing, we have consid-

ered decentralized multihypothesis sequential tests. Two new algorithms are proposed,

DMSLRT-1 and DMSLRT-2. Numerical comparisons are made and the theoretical per-

formance of the first algorithm is also carried out.

Future Directions

The following problems can be further investigated:

• Asymptotic optimality of SPRT-CSPRT.

• Analysis of GLR-SPRT and GLR-CSPRT.

• Effect of feedback from the fusion center in the proposed algorithms and the optimal
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communication scheme for the CRs to transmit its decision to fusion center in our

asynchronous sequential setup.

• Theoretical analysis of universal sequential hypothesis testing algorithms for con-

tinuous alphabet and its decentralized version. What is the optimal quantization

technique in our setup?

• Investigating sequential spectrum sensing along with spectrum sharing.

• Implementation and complexity issues of the proposed algorithms in Software De-

fined Radio hardware platforms (like GNURadio, Lyrtech SDR etc.)

• Further study of decentralized multihypothesis sequential problem.

• Extension of the proposed algorithms to multichannel scenario.
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