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ABSTRACT

Inferring the node arrival sequence from a snapshot of a dynamic

network is an important problem, with applications ranging from

identifying sources of contagion to flow of capital in financial trans-

action networks. Variants of this problem have received significant

recent research attention, including results on infeasibility of so-

lution for prior formulations. We present a new formulation of

the problem that admits probabilistic solutions for broad classes

of dynamic network models. Instantiating our framework for a

preferential attachment model, we present effectively computable

and practically tight bounds on the tradeoff curve between optimal

achievable precision and density/recall. We also present efficient

algorithms for partial recovery of node arrival orders and derive

theoretical and empirical performance bounds on the precision and

density/recall of our methods in comparison to the best possible.

We validate our methods through experiments on both synthetic

and real networks to show that their performance is robust to model

changes, and that they yield excellent results in practice. We also

demonstrate their utility in the context of a novel application in

analysis of the human brain connectome to draw new insights into

the functional and structural organization and evolution of the

human brain.
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1 INTRODUCTION

The problem of inferring the arrival order of nodes in a dynamic

network, from its observed current state, is of considerable sig-

nificance. In a network of financial transactions, the arrival order

tracks the flow of capital. In mapping spread of infectious diseases,

arrival order allows one to identify early patients, yielding clues

to genetic origin, evolution, and mechanisms of transmission. In

social networks, one can map the spread of information, and use
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it to design personalized channels by prioritizing information of

shared interest. In networks of biochemical interactions (e.g., pro-

tein interaction networks), one can identify early biomolecules (e.g.,

proteins in prokaryotic species), which are known to be preferen-

tially implicated in cancers and other diseases [20].

Owing to this significance, and the availability of large datasets

in diverse application domains, there has been considerable recent

research interest in variants of this problem. Despite the apparent

simplicity of the informal problem statement, the node arrival in-

ference problem is highly complex, both from analysis and method-

ological points of view. This complexity stems, in part, from the

symmetries inherent in graphs and the models that generate them,

which admit multiple (partial) node orderings with equal likelihood.

Characterizing these symmetries and suitably reformulating the

problem to establish limits on inference is at the core of our analysis

framework. Efficient methods that achieve the prescribed limits of

inference characterize the algorithmic challenges associated with

the problem.

Dynamic graph models underlying a large class of applications

primarily consider node arrivals, along with corresponding edge in-

sertions (without corresponding node departures)
1
. Starting from a

snapshot of a dynamic network, the problem of inferring the arrival

order inverts the arrival process. Consequently, a specific inference

technique is intimately coupled with a corresponding model of

the arrival process. In this paper, we assume that networks evolve

according to some stochastic model, which provides the basis for

node order inference, with associated probabilistic guarantees. We

present a general framework for inferring node orders, and a spe-

cific instantiation of our framework in the context of a preferential

attachment model. We note that our framework is general, and

capable of admitting a large class of dynamic graph models. Our

specific instantiation of preferential attachment graphs is directly

applicable to a large number of applications, since the model has

been extensively studied in literature. We will primarily consider

the following form of the preferential attachment model:

Barabási-Albert model. Let PA (n,m) denote the following ver-
sion of the Barabási-Albert model [2]: the parameter n represents

the number of nodes in the network andm is the number of con-

nections a new node makes to existing nodes when it is added to

the network. To form graph Gt at time t , for t = 1, a single vertex

(called 1) is created withm self loops. At time t > 1, vertex t joins
the network and makesm connections to existing nodes in graph

Gt−1 with probability proportional to their current degrees as fol-

lows: each connection choice is conditionally independent of the

1
In many applications, for instance, brain coactivity, protein interaction, and citation

networks, departures do not play a significant role. In other domains, it is important to

consider departures – we do not directly address these domains in our current work.

https://doi.org/10.1145/3178876.3186105
https://doi.org/10.1145/3178876.3186105
https://doi.org/10.1145/3178876.3186105


others and satisfies Pr[t connects to k |Gt−1] =
degt−1 (k )
2m (t−1) , where

degt−1 (k ) is the degree of node k at time t − 1. This process con-

tinues until t equals n2. This paper primarily focuses on PA (n,m),
unless otherwise stated explicitly. We remark that the existence of

self-loops on the initial vertex allows for clean proofs; our theo-

retical and empirical results extend without significant changes to

models in which these self-loops are not present.

In our previous work [16], we present a formulation of the prob-

lem of recovering the temporal order of nodes in preferential attach-

ment graphs. Focusing on deriving fundamental limits on inference

of temporal order, we show that any estimator that outputs a total

ordering of vertices, with high probability, makes a large number of

mistakes (to be made precise later) – owing to inherent symmetries

in the network model. This negative result provides the motivation

for this work.

Our Contributions. In this paper, we present the following key

results:

• We present a relaxed formulation of the problem that aims to

infer a partial order on nodes (recall that a partial order satisfies

antisymmetry and transitivity), which is meant to approximate

the true arrival order. The intuition is that we allow an estimator

to make fewer vertex pair order inferences, in exchange for higher

precision.

We present detailed analytical results on the limits achievable in

this new formulation in terms of the tradeoff between expected

precision and partial order density. In particular, we derive tight,

efficiently computable linear programming bounds on the optimal

precision achievable when our estimator is required to make a

certain minimum number of vertex pair order inferences.

• We show that maximum likelihood estimation of a total order

of arrivals leads to an exponentially large set of equiprobable

solutions, making it an unfavorable notion of optimality.

• Our computable bounds on the optimal precision curve do not

yield efficient partial order estimators. For this reason, we intro-

duce and analyze, both theoretically and empirically, efficient

estimators: the first is optimal in the sense that it yields an es-

timator with perfect precision (see Theorem 3.5): that is, given

a relabeled preferential attachment graph, it infers all vertex or-

der relations that hold with probability 1. We rigorously analyze

the number of such relations and find them to be asymptotically

small (Theorem 5.1). This motivates our investigation of other al-

gorithms (the Peeling and Peeling+ algorithms), which sacrifice

some precision in order to achieve higher density.

• We present experimental evaluation on both real and synthetic

datasets. These experiments demonstrate the robustness of our

methods to variations in the preferential attachment model (see

Section 4) and provide guidance for future theoretical exploration.

We also present a novel application of our method to the analysis

of the human brain connectome to identify regions of “early” and

“late” development. This analysis could separate regions with core

functionality from those involved in functional specializations,

giving information about evolution of various structural and

functional elements.

2
We will drop the subscript n in Gn if it is implied from the context.

Prior RelatedWork. Several prior results focus on variants of the

problem of finding the oldest node in a graph [5, 10]. Bubeck et

al. [5] consider uniform attachment and preferential attachment

trees, and find a set that contains the root node with a prescribed

error probability. They prove that the set size is independent of

the number of nodes. However, their technique cannot be readily

extended to the casem > 1. Our proposed algorithms target a more

general problem, and can be used to find such a set for the oldest

node. For preferential attachment graphs, Frieze et al.[10] study the

problem of identifying the oldest node. However, their setting and

goal are rather different: they assume that the arrival order of nodes

is known, and their goal is to arrive at the oldest node by a process

that starts at a different node and only uses local information to

advance.

A related problem of detecting information sources in epidemic

networks has been studied by Shah et al. [19] for the Susceptible-

Infected model and Zhu et al. [22] for the Susceptible-Infected-

Recovered model. The more general problem of inferring node

arrival orders has been shown to be particularly challenging by us

in a recent work [16], in which we derive fundamental bounds for

exact and approximate recovery of vertex ordering in preferential

attachment graphs. Recognizing this complexity, in this paper we

focus on analysis and algorithmic approaches for partial ordering

of vertices. Mahantesh et al. [17] empirically studied inference of

arrival order via a binning method. In this context, we provide

a rigorous formulation and analysis, a simpler solution without

having to generate samples from an estimated random graph model.

We also provide a precise characterization of the performance of

our methods. To the best of our knowledge, our work presents the

first feasible and rigorous approach to the problem of inferring

partial orders in preferential attachment graphs.

2 PROBLEM FORMULATION

LetG be a graph drawn from the model PA (n,m). Note that, by def-
inition, the vertices of G are precisely the integers [n] = {1, ...,n},
where node j was the jth node to arrive. Next, the nodes are sub-

jected to a permutation π drawn uniformly at random from the

symmetric group Sn , and we are given the graphG
′
:= π (G ); that is,

the nodes ofG are randomly relabeled. This paper aims to develop

methods for inferring arrival order inG after observing G ′, i.e., to
find π−1. The permutation π−1 can be considered as the true arrival

order of the nodes of the given graph; that is, π−1 (u) for a nodeu in

G ′ gives the arrival time of that node in the original graph process.

In our recent work [16], a solution to this problem takes the form

of an estimator function ϕ :Gn → Sn , where Sn is the symmetric

group on n letters and Gn is the set of graphs on n vertices. We

evaluated estimators using the expected Kendall τ distance between

ϕ (π (G )) and π−1 as a metric. In particular, they showed that any

such estimator makes, with high probability, Θ(n2) inversion errors

(note that the maximum possible number of such errors is

(n
2

)
=

Θ(n2)), owing to the existence of a superexponentially large number

of equiprobable graphs with the same structure as π (G ).
In view of this negative result, we relax the problem: instead of

requiring that an estimator infer a total order (i.e., a permutation),

we study estimators that output partial orders on the set of vertices.

For a partial order σ , a relation u <σ v indicates a guess that



π−1 (u) < π−1 (v ). The advantage of allowing partial orders is that
the ability of an estimator to refrain from guessing the relative order

of some vertex pairs allows for the possibility of greater precision.

An example of our new setting is given in Figure 1.

Original graph G

1

2

4

3

π (G )

3

2

1

4

Permutation π :

[
1 2 3 4

3 2 4 1

]

Figure 1: An example scenario. The estimator sees only π (G ) and
must infer π−1. E.g., it may output the order σ = {4 ≺ 1 ≺ 2} The

relation 4 ≺ 1 is correct, since π−1 (4) = 3 < π−1 (1) = 4, but the

relations 4 ≺ 2 and 1 ≺ 2 are incorrect, since π−1 (4) = 3 > π−1 (2) = 2

and π−1 (1) = 4 > π−1 (2) = 2. The density is δ (σ ) = 3/
(
4

2

)
= 3/6 =

1/2, the precision is θ (σ ) = 1/K (σ ) = 1/3, and the recall is ρ (σ ) =
θ (σ )δ (σ ) = 1/6. (See below for definitions of δ, θ and ρ .)

In evaluating a partial order σ as a solution to our problem,

we say that an ordered pair of vertices (u,w ) in π (G ) satisfying
u <σ w forms a correct pair if π−1 (u) < π−1 (w ). A pair of vertices

is unguessed with respect to σ if they are unrelated in σ . Note that,
given a partial order σ , we can always algorithmically find a total

order consistent with σ (i.e., a linear extension of σ ) and containing
at least as many correct pairs (but generally with more incorrect

pairs as well).

A partial order may be described by a directed, acyclic graph

(DAG) on the set of vertices. We find it useful to describe a partial

order by a binning, which is simply a more compact representation

of a DAG: vertices within a given bin are unrelated in the partial

order, while an edge from a binB1 to another one, say,B2, indicates

that v1 <σ v2 for every v1 ∈ B1 and v2 ∈ B2.

Why ismaximum likelihood estimationnot a good approach?

In the case of total order estimators, a natural way to approach the

problem is to frame it in terms of maximum likelihood estimation

(MLE) as follows: CML (H ) = argmaxσ ∈Sn Pr[π−1 = σ |π (G ) = H ].

The following proposition gives a characterization of the optimal

solution set CML. Its proof sketch can be found in the Section 5.3.

Proposition 2.1 (MLE of total orders). The maximum like-

lihood estimation solution set CML = CML (π (G )) satisfies |CML | =

en logn−O (n log logn)
with high probability.

Thus,CML gives a large number of equiprobable solutions and the

maximum likelihood formulation is not the appropriate approach

for the problem.

Measures for evaluating partial order estimators. In order to

evaluate estimators that output partial orders, we define a few

measures that capture important aspects of their performance: for

a partial order σ , let K (σ ) denote the number of pairs (u,v ) that
are comparable under σ : i.e., K (σ ) = |{(u,v ) : u <σ v}|, where
the notation u <σ v means that u is less than v according to the

partial order σ .

Density: The density of a partial order σ is simply the number of

comparable pairs, normalized by the total possible number,

(n
2

)
.

That is, δ (σ ) =
K (σ )
(n
2
)
. Note that δ (σ ) ∈ [0, 1]. Then the density of a

partial order estimator ϕ is simply its minimum possible density

δ (ϕ) = minH [δ (ϕ (H ))].

Measure of precision: This measures the expected fraction of correct

pairs out of all pairs that are guessed by the partial order. It is given

by

θ (σ ) = E

[
1

K (σ )
|{u,v ∈ [n] : u <σ v,π−1 (u) < π−1 (v )}|

]
.

For an estimatorϕ, we also denote byθ (ϕ) the quantityE[θ (ϕ (π (G )))].
The previous two measures capture the salient behaviors of

interest in an estimator. For convenience, we will sometimes refer

to an additional measure, which differs from the precision in the

choice of normalization:

Measure of recall: Thismeasure gives the expected fraction of correct

pairs (out of the total number,

(n
2

)
) given by the algorithm that

outputs the partial order σ . It can be interpreted as a modified

version of the Kendall τ metric for partial orders. It is defined as

ρ (σ ) = E



1(n
2

) |{u,v ∈ [n] : u <σ v,π−1 (u) < π−1 (v )}|


.

There is a simple relation among the different measures: for a

given partial order σ , we have ρ (σ ) = θ (σ ) · δ (σ ).
Our main objective is then to seek an estimator that is optimal

in the following sense: for an input parameter ε ∈ [0, 1], we wish
to find an estimator ϕ which has δ (ϕ) ≥ ε and maximum possi-

ble precision θ (ϕ). This then yields an optimal curve θ∗ (ε ), that
characterizes the tradeoff between precision and density. The main

results of this paper (explained in the next section) derives com-

putable bounds on this curve and efficient heuristic estimators that

approach it.

Remark 1. We could have defined a tradeoff curve between preci-

sion and recall, but this would have the undesirable feature that the

optimal precision is not necessarily defined for every value of recall

in [0, 1], since some values for recall are not achievable [16].

3 MAIN RESULTS

Our main results concern the approximation of the optimal pre-

cision function θ∗ (ε ) defined in the previous section. We start by

expressing the precision of a given estimator ϕ as a sum over all

graphs H :

θ (ϕ) =
∑
H

Pr[π (G ) = H ]

1

K (ϕ (H ))
×

E
[
|{u,v ∈ [n] : u <ϕ (H ) v,π

−1 (u) < π−1 (v )}|
����π (G ) = H

]
,

where the conditional expectation is with respect to the randomness

in π and G. Note, however, that, under the conditioning, once π is

fixed, then so is G. Note that we were able to take
1

K (ϕ (H )) outside

the expectation because it is constant with respect to π .
This equation shows that, to exhibit an optimal estimator, it is

sufficient to choose, for eachH , a value forϕ (H ) (i.e., a partial order)



that maximizes the expression

E
[
|{u,v ∈ [n] : u <ϕ (H ) v,π

−1 (u) < π−1 (v )}|
����π (G ) = H

]

K (ϕ (H ))
(1)

subject to the density constraint that K (ϕ (H )) ≥ ε
(n
2

)
.

To do this, we derive a useful representation for this optimiza-

tion problem as an integer program. There are various ways to

do this, but our method allows for simple upper bounds via linear

programming relaxations.

3.1 Integer program formulation

To each ordered pair (u,v ) of vertices of H , we associate a binary

variable xu,v , where setting xu,v = 1 indicates that u <ϕ (H ) v .
Then, we can rewrite the objective function (1) in terms of these

variables by expressing the cardinalities in the numerator and de-

nominator as sums of these indicators. Using linearity of expecta-

tion, we set:

Jε (ϕ) =

∑
1≤u<v≤n pu,v (H )xu,v∑

1≤u,v≤n xu,v
, (2)

where pu,v (H ) = Pr[π−1 (u) < π−1 (v ) |π (G ) = H ]. We have the

following constraints, coming from the fact that the outputs of our

estimators are partial orders and from our constraint on a given

minimum density:

(1) Antisymmetry: xu,v + xv,u ≤ 1.

(2) Transitivity: xu,w ≥ xu,v + xv,w − 1 for all u,v,w ∈ [n].

(3) Minimum density:

∑
1≤u,v≤n xu,v ≥ ε

(n
2

)
.

(4) Domain restriction: xu,v ∈ {0, 1} for all u,v ∈ [n].

The above integer program is rather explicit, except for the

coefficient pu,v (H ). The next lemma gives a combinatorial formula

for the probability pu,v (H ). Associated with permutations of the

random graph model, we define the following terms:

Set of feasible permutations of a graph H : the subset Γ(H ) ⊆ Sn ,
which consists of permutations σ , such that σ (H ) has positive

probability under the distribution PA (n,m). An example of a per-

mutation that is not feasible for a graphG generated by preferential

attachment is π = (1,n), which swaps the first and last vertices.

This is because the degree of the vertex labeled n in the resulting

graph π (G ) is > m, which happens with probability zero.

Set of admissible graphs ofH :Adm(H ) = {σ (H ) : σ ∈ Γ(H )}. These
are the graphs obtained by applying elements of Γ(H ) to H .

Lemma 3.1 (Expression for coefficients of the optimal

precision integer program). For all v,w ∈ [n] and graphs H ,

Pr[π−1 (v ) < π−1 (w ) |π (G ) = H ] =
| {σ : σ −1∈Γ(H ),σ −1 (v )<σ −1 (w ) } |

|Γ(H ) | .

The proof is given in Section 3.1.

We thus end up with an integer program written in terms of

coefficients that are (in principle) explicitly computable, and the

expression in Lemma 3.1 can be used to guide intuition in the

design of more efficient heuristic methods. In the next subsection,

we define the directed version of a sampled graph π (G ) and explain
how to efficiently recover it from π (G ). This will be essential in
the calculation of the coefficients pu,v (H ), and it will yield efficient

heuristic partial order estimators.

Remark 2. The integer program formulation and Lemma 3.1 hold

for any random graph model in which two positive-probability graphs

that are isomorphic are equiprobable.

3.2 Recovering edge directions

To efficiently calculate pu,v (H ), we need to further characterize

the set Γ(H ) (note that its cardinality is invariant under relabeling).

At a high level, given H = π (G ), we can recover a natural directed,

acyclic version Dir(H ), which induces a partial order on its vertices.

We can then show that Γ(H ) is precisely the set of linear extensions

of this partial order. We can then use algorithms developed for

approximate counting of linear extensions to estimate pu,v (H ).
We first formalize the DAG in question:

Definition 3.2 (DAG of G). For G distributed according to the

preferential attachment distribution (for anym), we define DAG(G )
to be the directed acyclic graph defined on the same vertex set as

G, such that there is an edge from u to v < u if and only if there is

an edge between u and v in G. This is just G with the directions of

edges marked in accordance with the graph evolution (incident on

an existing node from a new node).
3
. For an arbitrary permutation

σ with H = σ (G ), we denote by Dir(H ) = σ (DAG(G )).

3.2.1 Exact recovery of π (DAG(G )). Next, we show that we

can efficiently recover π (DAG(G )), given access to H = π (G ), via
a method that we call the Peeling technique. We note here that

DAG(G ) and π (DAG(G )) are exactly the same in structure and rela-

beling will not affect the directions. Hence recovering the directions

of edges from a younger node to an older node is the first step

toward our goal. The algorithm starts by identifying the lowest-

degree nodes (in our model, the nodes of degree exactly m) and

places them in the youngest bin. Then, it removes all of these nodes

and their edges from the graph. The process proceeds recursively,

removing the lowest-degree nodes and placing them in the next-

youngest bin, until there are no more nodes to remove from the

graph. To construct Dir(H ) = π (DAG(G )) during this process, we
simply note that all of the edges of a given degree-m node in a

given step of the peeling process must be to older nodes; hence,

their orientations can be recovered. See Lemma 3.3 and Section 5.5

for its proof. An example graph and its DAG with the indication of

bins are shown in Figure 2.

Lemma 3.3 (Reconstruction of π (DAG(G ))). The Peeling al-

gorithm exactly recovers π (DAG(G )) from π (G ).

The directed, acyclic graph π (DAG(G )) conveniently encodes

the set of all vertex pairs whose true order relationship can be

inferred with complete certainty. To make this precise, for a graph

H or the resulting DAG Dir(H ), we define a vertex pair order event
(u,v ), for vertices u,v ∈ H , to be simply an ordered pair of distinct

vertices. We interpret this as a claim thatu came beforev according

to π−1.

Definition 3.4 (Perfect vertex pair order event). A vertex pair order

event (u,v ) is perfect for a graph H if, for all σ ∈ Γ(H ), we have
σ (u) < σ (v ). Equivalently, recalling that π was the uniformly

random permutation used to relabel the vertices of G , Pr[π−1 (u) <
π−1 (v ) |π (G ) = H ] = 1.

3
In reference to the DAG of a preferential attachment graph, we ignore self-loops,

without loss of generality.



Algorithm 1 Peeling Technique

1: procedure Peeling(H )

2: t ← 1

3: while NoNodes(H ) > 0 do ▷ Finds no. of nodes

4: MinDeg← FindMinDeg(H ) ▷ Finds minimum degree

5: Bt ← {u : deg(u) = MinDeg} ▷ Nodes with minimum

degree

6: H ← RemoveNodes(H ,Bt ) ▷ Removes minimum

degree nodes from H
7: t ← t + 1
8: end while

9: ReverseOrder({Bt })▷ Reverse the indices of Bt ’s, e.g, 1 to
t , t to 1

10: return {Bt } ▷ Returns set of bins

11: end procedure

1
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Figure 2: Graph (left) and its DAG (right) where the same bin nodes

have the same colors.

The following result formalizes our intuition that Dir(H ) cap-
tures all probability-1 information about vertex ordering in H :

Theorem 3.5 (Dir(H ) captures perfect vertex pair informa-

tion). Consider a graph H on the vertex set [n] satisfying Γ(H ) , ∅.
Let its DAG Dir(H ) be denoted by K . For any u,v ∈ [n], (u,v ) is
perfect for H if and only if there exists a directed path in K from v to

u (denoted by v { u).

Proof. First, we will show that if v { u, then (u,v ) is perfect.
This follows by showing the simpler claim that if there is an edge

from v to u (denoted by v → u), then (u,v ) is perfect.
Letσ ∈ Γ(K ). This means thatσ (K ) is a positive-probability DAG

under the preferential attachment model. Note also that σ (v ) →
σ (u) in σ (K ), which implies that we certainly must have σ (v ) >
σ (u) (vertices only choose to connect to older vertices). Since σ
was arbitrary, we have that (u,v ) is perfect for H , as desired.

Now we show the converse claim: if (u,v ) is perfect for K , then
v { u in K . We will do this by proving the contrapositive: assume

that there is no directed path from v to u. Then we will construct a

permutation σ satisfying i). σ ∈ Γ(K ), and ii). σ (u) > σ (v ). This is
equivalent to producing a feasible schedule of the vertices of K (i.e.,

a sequence of distinct verticesv1,v2, ...,vn of K , such that, for each

j ∈ [n], allm of the the descendants of vj in K are contained in

the set {v1, ...,vj−1}). We will require that vu > vv in the schedule.

Such a schedule gives a permutation satisfying the properties above

as follows: for each j, σ (j ) = vj .
To do this, we start by considering the sub-DAG Kv , consisting

of v and all of its descendants. Now, we set v1 to be the bottom

vertex of K (which is also the bottom vertex of Kv ). We will add

subsequent vertices to our schedule as follows: at each time step

t > 1, [n] is partitioned into three parts: Sp,t (the vertices already
in the schedule), Sa,t (the active vertices; i.e., those vertices not in
Sp,t , all of whose children in K are contained in Sp,t ), and Sd,t (the
dormant vertices; i.e., those vertices that are not active or already

processed). So Sp,1 = {v1}, Sa,1 is the set of neighbors of v1, and
Sd,1 consists of the rest of the vertices.

We observe that Sa,t is nonempty unless t = n: otherwise, there
are less than n vertices in Sp,t (in fact, precisely t of them), and the

rest are in Sd,t . In this case, consider the lowest vertex ℓ in Sd,t ;
ℓ cannot have any children in Sd,t , since it is the lowest, so all of
its children must be in Sp,t . But this means precisely that ℓ ∈ Sa,t .
Thus, Sa,t must be nonempty.

Note that it is clear that at any time t , we can designate any

active vertex as the next one in our schedule; we would then move

it to the processed set, potentially resulting in some vertices in Sd,t
becoming active.

Now, observe that at time t = 1, some vertex from Kv must

be active (by the same reasoning that established that the active

set must be nonempty). In fact, until all vertices of Kv have been

processed, there remains at least one such vertex that is active. We

thus choose active vertices Kv until it is entirely processed (note

that we do not process the vertex u < Kv yet, since there is no

directed path from v to u). Then we process active vertices until a

complete schedule has been generated. By construction, v comes

earlier in the schedule than u, which completes the proof. □

3.3 Integer program coefficients via Dir(H )
The discussion in the previous subsection particularly implies that

Γ(H ) is precisely the set of linear extensions of the partial order

defined by Dir(H ).
Coming back to computing the coefficients pu,v (H ) in the inte-

ger program, we see that this task can be reduced to the problem

of counting linear extensions of Dir(H ) and of Dir(H ) with the

additional relation that u ≺ v .
In full generality, the problem of counting linear extensions of

an arbitrary partial order is classically known to be #P-complete [4].

However, there exist fully polynomial-time approximation schemes

for the problem, which allow us to approximate the coefficients up

to an arbitrarily small relative error.

Proposition 3.6 (FPTAS for approximating pu,v (H )). There
exists a randomized algorithm which, on inputH and positive number

λ, outputs a sequence p̂u,v (H ) satisfying |p̂u,v (H ) − pu,v (H ) | ≤
λpu,v (H ) for all u,v ∈ [n] with probability 1 − o(1), in time

O (n5 (logn)3λ−2 log(1/λ)).

The time complexity given in the above proposition is based on the

worst case running times of the fastest known schemes [1, 13].

Given thatwe can approximate the coefficientspu,v (H ) by p̂u,v (H )
= (1 ± λ)pu,v (H ) uniformly for arbitrarily small λ > 0, the next
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lemma bounds the effect of this approximation on the optimal value

of the integer program.

Lemma 3.7 (Effect of perturbation of pu,v (H )). Consider

the integer program whose objective function is given by Ĵε,λ (ϕ) =∑
1≤u<v≤n p̂u,v (H )xu,v∑

1≤u,v≤n xu,v
, with the same constraints as in the original

IP. Let ϕ∗ and ˆϕ∗ denote optimal points for the original and modified

integer programs, respectively. Then we have | Ĵε,λ ( ˆϕ∗) − Jε (ϕ∗) | ≤
2.5λ, for arbitrary λ > 0.

This particularly implies that we can approximate the optimal ob-

jective function value to an arbitrarily small relative error, provided

that the true value is bounded away from 0.

Given these results, we can efficiently approximately upper

bound the optimal precision for any given density constraint as fol-

lows: on a randomly generated input graph H , we recover its edge

directions and use them to approximate the coefficients pu,v (H )
up to some relative error λ (using Proposition 3.6). Now, at this

point, we have a rational linear integer program with estimates for

the coefficients. We can convert this to an equivalent truly linear

integer program using a standard renormalization transformation

(we will not explicitly indicate this transformation in what follows).

We then consider the natural linear programming relaxation,

obtained by replacing the binarity constraint with xu,v (H ) ∈ [0, 1]
for all u,v . This can be solved in polynomial time using standard

tools. The result is depicted in Figure 3. We thus have an effectively

computable approximate upper bound on the precision-density

curve, which we can use as a baseline for comparison with efficient

heuristics.

Due to the high polynomial time complexity involved in solv-

ing the optimal scheme (Proposition 3.6 and complexity of linear

programming), we now provide efficient estimators whose per-

formance is close to the optimal curve. They stand as efficiently

computable lower bounds on the optimal precision for particular

densities, which empirically show the tightness of our upper bound.

3.4 Estimators

We propose three estimators here. A detailed analysis of the esti-

mators is given in Section 5. Figure 3 shows a comparison of the

following estimators with the optimal estimator. All these estima-

tors are based on the Peeling procedure. The time complexity of the

estimators is based only on the formation of DAG, and is O (n logn).
Note that one must take care in designing an estimator to ensure

that the resulting set of vertex pair order relations satisfies transi-

tivity and antisymmetry.

Maximum-density precision 1 estimator. The estimator itself

takes as input a graph H and outputs the partial order as Dir(H )
as recovered by the Peeling algorithm. This estimator gives the

maximum density among all estimators that have precision one.

Peeling: A linear binning estimator via peeling.Another nat-

ural estimator arises from the bins given by the Peeling procedure.

In particular, the sequence of subsets of vertices removed during

each step naturally gives a partial order: each such subset forms

a bin, and bins that are removed earlier are considered to contain

younger vertices (recall the definition of a binning, given near the

beginning of Section 2). This forms a linear binning, which is a

special type of partial order, defined as follows: a partial order ≺

is a linear binning if its elements may be partitioned into subsets

B1, ...,Bj , for some j, such that u ≺ v if and only if there is a pair

i < j such that u ∈ Bi and v ∈ Bj . This is equivalent to a graded

partial order. With a slight abuse of notaion, when the term Peeling

is used as an estimator, we mean the above linear binning estimator.

Peeling+: Peeling with deduction of same bin pairs. This es-

timator first runs the Peeling algorithm, and classifies the vertices

into bins. For each node except those in binB1, we find the averaged

value of its neighbors’ bin numbers (levels), which we call in what

follows the node’s average neighbor level. A high value of average

neighbor level indicates youngness of the node. For each pair of

nodes inside each bin, we infer the order between them based on

the the averaged neighbor level of the respective nodes. Moreover,

its performance is very close to the optimal curve at around ε = 1.

(The density may not be exactly 1 because there may still exist

some pairs inside bins that have the same average neighbor level

and thus makes them incomparable. Moreover we cannot order the

nodes inside bin 0).

The proposed three estimators serve different purposes. The

perfect-precision estimator outputs pairs with full accuracy, but

only a few. The Peeling+ gives a total order, but with less accuracy

(which is much better than random guessing, and close to the

optimal algorithm). The Peeling stands in the middle with better

accuracy than Peeling+, and yet recovers a constant fraction of

number of pairs. We will primarily focus on Peeling estimator.

4 EXPERIMENTS

In this section, we evaluate ourmethods on synthetic and real-world

networks. In what follows, σ
perf
,σ

peel
,σ

peel+
denote the partial

orders produced by the Perfect-precision, Peeling, and Peeling+

algorithms.

4.1 Synthetic graphs

We derive significant insight by studying the Peeling method em-

pirically. Table 1 and Figure 4 shows simulation results for samples

from the Barabási-Albert model. The performance improves greatly

with even small increases inm. This can be explained intuitively as

follows: for smallm, as the graph evolves, each new vertex is likely

to connect to high-degree nodes, which are already in older bins in



m θ (σ
peel

) ρ (σ
peel

) δ (σ
peel

)

5 0.954 0.758 0.794

10 0.971 0.858 0.884

25 0.986 0.936 0.949

50 0.993 0.967 0.974

Table 1: Comparison for PA (n = 5000,m)

DAG(G ). Thus, bins tend to be large, resulting in low precision and

recall. For largerm, each new node chooses a degree-m node (say,v)
with higher probability, since a constant fraction of all nodes have

degreem and the number of choices that each new vertex makes

increases withm. A new vertex choosing v results in shifting the

bin indices of all descendants of v . Thus, largerm leads to a DAG

with a more equitable distribution of vertices across bins, which

yields higher precision and recall.
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Figure 4: Recall of the Peeling algorithm remains constant when

the number of nodes varies

Robustness of the Peeling algorithm. Table 2 demonstrates

robustness of our Peeling algorithm for various generalizations

of the model: preferential attachment model with variablem (de-

noted byM and ∼ unif{a,b} denote discrete uniform distribution),

uniform attachment model (denoted byUA), and the very general

Cooper-Frieze model [8, 9]. In our instance of Cooper-Frieze model,

at each time instant, number of new edges at a time stepm is drawn

from ∼ unif{5, 50} , the model allows either addition of a new node

(with probability 0.75) or addition of edges between exiting nodes,

and the endpoints of new edges can be selected either preferentially

(with probability 0.5) or uniformly among existing nodes.

Technique θ (σ
peel

) ρ (σ
peel

) δ (σ
peel

)

PA (n,m = 25) 0.958 0.936 0.977

PA (n, M ), M ∼ unif{5, 50} 0.691 0.683 0.988

UA (n,m = 25) 0.977 0.967 0.99

UA (n, M ), M ∼ unif{5, 50} 0.827 0.823 0.995

Cooper-Frieze (Web graph) model 0.828 0.822 0.993

Table 2: A general comparison: n = 5000

.
These results suggest that the proposed DAG-based methods can

simultaneously achieve high precision and recall/density.

4.2 Real-world networks

Datasets. We use the following datasets. All the datasets except

human brain network are publicly available. We explain later how

the brain network is formed. The ArXiv, Wikipedia and DBLP are

collected from [7], and human protein network is available from

BioGRID (https://thebiogrid.org). The first three networks have

Dataset # Nodes # Edges Genre

ArXiv High Energy Physics 7,464 116,268 Citation

Simple English Wikipedia 100,312 1,627,472 Hyperlink

DBLP CS bibliography 1,137,114 5,018,065 Coauthorship

Human protein interaction 14,867 126,593 Biological

Human brain 56 1,164 Biological

Table 3: Network statistics

.
partial temporal information available, and he original ranking

of the network is deduced from the time stamp of the edges. For

the protein network, only a prediction is presented in previous

works, and for the brain network no explicit temporal information

is available.

The ArXiv network:Directed network; the nodes are the publications

and the edges are formed when a publication cite another. The

original ranking is not a full ranking; it has 1457 bins.

The Simple English Wikipedia dynamic network: Directed network;

it shows the evolution of hyperlinks between articles of the Simple

English Wikipedia. Nodes represent articles and an edge indicates

that a hyperlink was added or removed.

DBLP computer science bibliography: Undirected; an edge between

two authors represents a common publication.

Human protein interaction network: Directed network; the nodes are

the proteins, and the links indicate interaction between two proteins

in gene formation. The original ranking is taken as the approximate

ranking provided by ProteinHistorian [6], and has only 16 bins.

Note that the ranking provided in [6] is only an approximation, and

not the ground truth.

Human brain network: It is an undirected network. The nodes here

are the regions in human brain, and the edges represent commu-

nication between two regions while performing an activity. The

network is formed as follows. We gathered the human brain fMRI

data at resting state from the Cambridge-Buckner dataset [3, 11].

An initial network is first formed with nodes as voxels, and there

are 243,648 voxels. Each voxel is associated with a time series data

that lasted approximately 350 seconds. We compute the Pearson

correlation coefficient between the time series of every pair of vox-

els. If the correlation is greater than 0.8 we form an edge between

the voxels. Finally we form a network of 56 regions, which is a

contracted network of voxels - all voxels corresponding to a region

are merged to form a node, and an edge is created between two

regions when there exists at least one edge the between member

voxels.

Results. The results for all the datasets except human brain net-

work are presented in Table 4. For all real networks above, with

the exception of the protein interaction network, our algorithms

yield excellent precision and recall results, consistent with our the-

oretical predictions. Note that these results would have improved if

we have complete temporal information instead of partial original

ranking with bins. The above table shows the use of Peeling+ algo-

rithm. When the density of the recovered partial order by Peeling

algorithm is low, the recall can be improved via Peeling+ with a

slight loss in precision (see the Wikipedia result).

Human protein interaction network: In the case of protein interac-

tion networks, our definitions of precision and recall are overly

pessimistic for a few reasons, the first of which is that the “ground

truth” that we use is a very sparse binning. A pair whose order is

https://thebiogrid.org


θ (σ
peel

) ρ (σ
peel

) δ (σ
peel

) ρ (σ
peel+

)

ArXiv 0.708 0.681 0.961 0.707

Wikipedia 0.624 0.548 0.878 0.609

DBLP 0.785 0.728 0.927 0.764

Protein interaction 0.5526 0.511 0.925 0.54

Table 4: Results for real-world networks: θ (σ
peel+

) ≈ ρ (σ
peel+

) and
δ (σ

peel+
) ≈ 1.

inferred by our algorithm and not inferred in this ground truth is

counted as an error. Thus, we extend the ground truth ordering

to a total order by randomly guessing the order of incomparable

pairs, resulting in the numbers given. Moreover, importantly, the

protein interaction network is much noisier than the others that we

analyzed: while we have reasonable confidence that all edges are

accounted for in the citation and Wikipedia networks, there is no

such guarantee that this holds for the protein interaction network,

as the presence or absence of each edge is costly to determine.

Human brain network: The purpose here is to predict the evolution-

ary order among the important regions inside the brain. Figure 5a

presents the bins of regions we found via Peeling algorithm. Fig-

ure 5b shows an image of the human brain with prominent regions

annotated with bin number. We note here that there is no available

ground truth of the ranking, and we propose our order for further

study in this area. Our ranking can be backed up with the results

we derived in this paper and with the prior studies that show pref-

erential attachment involvement in brain networks [21]. Moreover

a quick consistency check can be done on some of the brain regions.

E.g., the corpus callosum which joins the two hemispheres of the

brain is supposed to develop at the earliest stages of brain evolution.

Another example is the uncinate fasciculus, the last white matter

tract to be evolved in the human brain, which is in compliance with

our result. We consider this as a first step towards finding proper

evolutionary order of brain regions.

Finally, in general, the more preferential attachment plays a role

in the formation of a real network, the closer the performance will

be to our theoretical and synthetic results. In some of the networks

that we analyzed, previous studies report preferential attachment

involvement, for instance see [14]. Vértes et al. proposed in [21] a

widely used variation of preferential attachment model for brain

functional networks.

5 ANALYSIS OF ALGORITHMS, PROOFS

Here we derive certain properties of the estimators and provide

proof sketches for the results in the previous sections.

5.1 Maximum-density precision 1 estimator

In this subsection, we show that the point (density, precision)

= (0, 1) is a point on the optimal precision curve: namely, we prove

perfect-precision estimator estimator has precision one, but asymp-

totically negligible density, and this estimator has the maximum

density among all precision one estimators. From Theorem 3.5, we

know that this achieves precision 1. So, in order to prove the remain-

der of our claim, we need to analyze the density of this estimator;

that is, we analyze the typical number of perfect pairs, culminating

in the following theorem.

Theorem 5.1 (Typical number of perfect pairs). With high

probability, for arbitrary fixedm ≥ 1, the number of perfect pairs

associated with G is Ω(n logn) and o(n2) (uniformly inm). When

m = 1, we have the matching upper bound of O (n logn), where the
hidden constant in the asymptotic notation can be explicitly calculated.

Proof (sketch). Upper bound: Let Xt denote the number of

perfect pairs in the graph immediately after time t . We will prove

the claimed upper bound by upper bounding Xt in expectation,

then using Markov’s inequality. To bound E[Xt ], we will show that

it is sufficient to upper bound X (v ) in expectation for each v < t ,
where X (v ) denotes the number of descendants of v in the DAG.

Using Proposition 1 of [15] with ℓ = Θ(log4/5 n log(logn)), we
can show that the total number of descendants X (u), for all u ≤ n,
is at most O (n/ log1/5 n), with high probability.

Now, we translate this to an upper bound on Xt as follows: we

have E[Xt ] ≤ E[Xt−1] +m +mO (t/ log1/5 t ). This upper bound
is from the following facts: at time t , all perfect vertex pairs from
time t − 1 are still perfect, contributing the Xt−1 term. Next, vertex

t makes at mostm choices, creating at mostm new perfect pairs

(which explains the second term). Finally, the third term comes

from the fact that if t chooses v , and u is a descendant of v (so that

(u,v ) is a perfect pair), then (u, t ) is also perfect.

Solving this recurrence, we find that E[Xt ] = o(t2), as desired,
and the proof is completed using Markov’s inequality.

In the case wherem = 1, we have a much better upper bound

on X (v ), for arbitrary v: with high probability, at time t , X (v ) =
O (log t ), as a result of the height of the tree being O (log t ). This
gives the improved bound of E[Xt ] = O (t log t ).

Lower bound: We only sketch the lower bound proof. In a

nutshell, form = 1, we can show that Xt is the total path length of

the tree. We then use the results of [18] to finish the proof. For gen-

eralm, we can reduce to them = 1 case using the correspondence

between PA (n,m) and PA (nm, 1). □
The above theorem implies that the density of the perfect pair

estimator is asymptotically 0, for arbitrarym.

A scrutiny of the numerical evidence leads to a conjecture about

the more precise behavior of the number of perfect pairs as a func-

tion ofm: we conjecture that form > 1, the number of perfect pairs

is O (n1+δ (m) ), for some function 1 > δ (m) > 0. For lack of space,

we omit the explanation of the conjecture.

Theorem 5.1 gives us a single point on the optimal precision

curve, and it is very simple to show that the curve is decreasing as ε
increases. In the next section, we show Peeling estimator achieves

nontrivial density and precision with high probability, which gives

a lower bound on the optimal precision for another value of the

density. We will use this to give an empirical indication of the

tightness of our upper bound.

5.2 Linear binning estimator Peeling estimator

We can start by showing a crude estimate of the precision and

density of the Peeling estimator.

Theorem 5.2 (Non-negligible precision and density of the

peeling estimator). For each m ≥ 1 the Peeling estimator has

precision and density Θ(1).

Proof (sketch). The precision claim follows by showing that,

with high probability, there exist Θ(n) vertices in the last Θ(n)
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timesteps that are never chosen (so that they are removed in the

first layer and, thus, correctly declared to be younger than Θ(n)
other vertices). This also proves the density claim. □

We now discuss further analysis of the procedure. In the case

m = 1, the original graph G is a tree, and we are able to precisely

characterize certain parameters of the Peeling procedure, owing

to the large amount of literature surrounding the preferential at-

tachment distribution for this case (the structure is (essentially)

identically distributed to a random plane-oriented recursive tree):

for instance, the asymptotic size of the jth youngest bin, for each

fixed j, may be precisely determined by writing it as an additive

parameter and using results from Wagner et al. [18]. This gives

us a complicated but explicitly computable convergent series ex-

pression for the typical asymptotic density of the estimator in this

case. Precise theoretical results form > 1 (and for the precision

in them = 1 case) are much more elusive, owing to the fact that

the precision and the DAG structure of the graph fail to lead to

clean recursive formulas for parameters of interest (though a Pólya

urn approach allows us to derive very complicated expressions

involving arbitrarily high moments and covariances of quantities of

interest); however, we can show that the peeling process recovers

all perfect pairs, in addition to many imperfect ones.

5.3 Proof sketch of Proposition 2.1

First, by definition of Γ(H ) (see Section 3.1 for definitions), we

must have that CML (H ) ⊆ Γ(H ). We will show, in fact, that the

likelihoods given to all elements of Γ(H ) are equal. This will then
imply that CML (H ) = Γ(H ). Next, from a result of [15], we have

that with high probability |Γ(π (G )) | = en logn−O (n log logn)
, which

will complete the proof.

So it is sufficient to show that, for each σ ∈ Γ(H ), Pr[G =
σ (H ) |π (G ) = H ] depends only on the structure S (H ). To do this,

note that by definition of Adm(H ) and Γ(H ), we must have σ (H ) ∈
Adm(H ). So it is enough to show that for any two positive-probability

isomorphic graphs G1 and G2, we have Pr[G = G1] = Pr[G = G2].

We omit the proof of this fact for the sake of brevity.

5.4 Proof of Lemma 3.1

We can express the conditional probability in question as a sum, as

follows: Pr[π−1 (v ) < π−1 (w ) |π (G ) = H ]

=
∑
σ : σ −1∈Γ(H ),σ −1 (v )<σ −1 (w ) Pr[π = σ |π (G ) = H ].

Now, recall that π−1 ∈ Γ(H ) under this conditioning, since

π (G ) = H andG is admissible. Moreover, it is uniformly distributed

on Iso(G,H ) (the set of isomorphisms from G to H ), so we have

Pr[π = σ |π (G ) = H ] =
Pr[G=σ −1 (H ) |π (G )=H ]

|Aut(H ) | = 1

|Aut(H ) | |Adm(H ) | .

Taking the sum, this becomes
| {σ : σ −1∈Γ(H ),σ −1 (v )<σ −1 (w ) } |

|Aut(H ) | |Adm(H ) | . Fi-

nally, recall that |Adm(H ) | = |Γ(H ) |/|Aut(H ) | [16]. □

5.5 Proof of Lemma 3.3

The Peeling algorithm maintains the following invariant at the

beginning of each step: every degree-m node connects only to

vertices older than itself in the remaining graph. This is clear in the

initial step, since a node can only have degree exactlym in the full

graph if its neighbors are all older than it is. In subsequent steps

(assuming by induction that the invariant holds for all previous

ones), if some edge incident with a degree-m node u is incident

with a younger node v in the current graph, then this implies that

some nodew older than u and adjacent to u in a previous step has

already been removed. This, in turn, implies that in that previous

step, w had degreem and was connected to u, a younger vertex.
This yields a contradiction, completing the proof. □

6 CONCLUSIONS

We considered approaches to the problem of estimating the tempo-

ral ordering of nodes in a dynamically grown network, based on

modeling by the preferential attachment distribution. To overcome

the limitations imposed by the structure of such models, we dealt

with partial ordering schemes. The proposed algorithms showed

good performance both in analysis and simulations, that is close to

the optimal estimator.

We expect that this workwill open upmany interesting questions

on the inference of node ages in growing networks.
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