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a b s t r a c t

This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which
focus on reducing the number of samples to make a reliable detection. We propose
algorithms based on decentralized sequential hypothesis testing in which the Cognitive
Radios sequentially collect the observations, make local decisions and send them to the fusion
center for further processing to make a final decision on spectrum usage. The reporting
channel between the Cognitive Radios and the fusion center is assumedmore realistically as a
Multiple Access Channel (MAC) with receiver noise. Furthermore the communication for
reporting is limited, thereby reducing the communication cost. We start with an algorithm
where the fusion center uses an SPRT-like (Sequential Probability Ratio Test) procedure and
theoretically analyze its performance. Asymptotically, its performance is close to the optimal
centralized test without fusion center noise. We further modify this algorithm to improve its
performance at practical operating points. Later we generalize these algorithms to handle
uncertainties in SNR and fading.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Presently there is a scarcity of spectrum due to the
proliferation of wireless services. Cognitive Radios (CRs)
are proposed as a solution to this problem. They access the
spectrum licensed to existing communication services
(primary users) opportunistically and dynamically without
causing much interference to the primary users. This is
made possible via spectrum sensing by the Cognitive
Radios (secondary users), to gain knowledge about the
spectrum usage by the primary devices. However due to
the strict spectrum sensing requirements [1] and the
esented in NCC 2011,
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various inherent wireless channel impairments, spectrum
sensing has become one of the main challenges faced by
the Cognitive Radios.

Multipath fading, shadowing and hidden node problem
cause serious problems in spectrum sensing. Cooperative
(decentralized or distributed) spectrum sensing in which
different cognitive radios interact with each other exploiting
spatial diversity [1,2] is proposed as an answer to these
problems. It also reduces the probability of false alarm and
the probability of miss-detection. Cooperative spectrum sen-
sing can be either centralized or distributed [1]. In the
centralized algorithm a central unit gathers sensing data from
the Cognitive Radios and identifies the spectrum usage [3]. On
the other hand, in the distributed case each secondary user
(SU) collects observations, makes a local decision and sends it
to a fusion center (FC) to make the final decision. Centralized
algorithms provide better performance but also have more
communication overhead in transmitting all the data to the
fusion node. In the distributed case, the information that is
sensing using distributed sequential detection via noisy
016/j.sigpro.2014.07.009i
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exchanged between the secondary users and the fusion node
can be a soft decision (summary statistic) or a hard decision.
Soft decisions can give better gains at the fusion center but
also consume higher bandwidth at the control channels (used
for sharing information among secondary users). However
hard decisions provide as good a performance as soft deci-
sions when the number of cooperative users increases [3].

Spectrum sensing problem can be formulated in different
ways, two of them being Neyman–Pearson framework (fixed
sample size detection) and sequential detection framework
which reduces the average number of samples taken for
deciding if a primary is transmitting or not [4]. Also, there
are two types of sequential detection: one can consider
detecting when a primary turns ON (or OFF) (change detec-
tion, see [5,6] and the references therein) or just testing the
hypothesis whether the primary is ON or OFF ([7–9] and
references therein). In [5], cooperative spectrum sensing
under sequential change detection framework with no coor-
dination between the secondary users is considered, and
random broadcast policies and several improvements are
proposed. In [6] a nonparametric framework is considered
and performance is studied theoretically also. In sequential
hypothesis testing one considers the case where the status of
the primary channel is known to change very slowly, e.g.,
detecting occupancy of a TV transmission. Usage of idle TV
bands by the Cognitive network is being targeted as the first
application for cognitive radio. In this setup (minimising the
expected sensing time with constraints on probability of
errors) Walds' SPRT (Sequential Probability Ratio Test) pro-
vides the optimal performance for a single Cognitive Radio [4].
But the optimal solutions for cooperative setup are not
available [10].

In this paper, we consider sequential hypothesis testing in
cooperative setup. Feedback from the fusion node to the CRs
can possibly improve the performance. However that also
requires an extra signaling channel which may not be avail-
able and has its own cost. Therefore we do not consider
feedback in our system. In sequential decentralized detection
framework, optimization needs to be performed jointly over
sensors and fusion center policies as well as over time.
Unfortunately, this problem is intractable for most of the
sensor configurations [10,11], specifically when there is no
feedback from the fusion center and there is limited local
memory, which is more relevant in practical situations.
Recently [11] and [12] proposed asymptotically optimal (order
1 (Bayes) and order 2 respectively) decentralized sequential
hypothesis tests for such systems with full local memory. But
these models do not consider noise at the fusion center and
assume a perfect communication channel between the CR
nodes and the fusion center. Also, often asymptotically
optimal tests do not perform well at a finite number of
observations. Zou et al. and Yilmaz et al. [7,8] also proposed
cooperative sequential algorithms for spectrum sensing, but
neither of them deal with the fusion center noise and SNR
uncertainty case.

Noisy channels between local nodes and fusion center
are considered in [13] in the decentralized sequential
detection framework. But optimality of the tests is not
discussed and the paper is more focused on finding the
best signalling schemes at the local nodes with the
assumption of parallel channels between local nodes and
Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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the fusion center and perfect knowledge of local node
probabilities of error.

We first propose a decentralized algorithm DualSPRT
which uses SPRT at the local nodes and a SPRT-like test at
the fusion center. Furthermore, we consider the receiver
noise at the fusion center and allow multiple local nodes to
transmit simultaneously their decisions to the fusion center
to reduce the transmission time. This of course means that
the fusion center does not know explicitly how many local
nodes are transmitting at a time and certain fusion center
decision rules, e.g., AND/OR/Majority [1,3] are ruled out in
our setup. Moreover unlike some of the previous works on
cooperative spectrum sensing using sequential testing (see
[9,13] and references therein) we analyze this algorithm
theoretically also.

We study asymptotic performance of DualSPRT, with
fusion center noise. It is particularly important in the CR
context because of detection in wireless channels at low SNR
[14]. It can approach the optimal centralized sequential
solution (in Bayes and frequentist sense), which does not
consider noise at FC. We assume a MAC (Multiple Access
Channel) as the reporting channel at the fusion center and the
test is not based on the local node probability of error. Later
we modify DualSPRT to improve its performance. The para-
meters of the modified algorithm are easier to fine tune also.
Furthermore we introduce a new way of quantizing SPRT
decisions of local nodes and extend this algorithm to cover
SNR uncertainties and fading channels. We have seen via
simulations that our algorithm works better than the algo-
rithm in [11] and almost as well as the algorithm in [12] even
when the fusion center noise is not considered and MAC layer
transmission delays are ignored in [12,11]. Li and Evans [15]
and Li et al. [16] consider distributed detection with MAC, but
not in sequential detection framework. Banavar et al. [17,18]
take into account MAC in the distributed estimation setup.

In addition, we generalize our algorithm to include uncer-
tainty in the received Signal to Noise Ratio (SNR) at the CRs
and fading channels between primary and CR. This requires a
composite hypothesis testing extension to the decentralized
sequential detection problem and is not considered in any of
the above references (although [13] considers SNR uncertainty
and fading between the CRs and the fusion center).

This paper is organized as follows. Section 2 presents
the model. Section 3 provides the DualSPRT algorithm. An
approximate theoretical performance of the algorithm is
also provided. Section 4 studies the asymptotic perfor-
mance of DualSPRT. In Section 5 we improve over DualSPRT.
We compare the different versions so obtained and also
compare them with existing asymptotically optimal decen-
tralized sequential algorithms. Section 6 extends these
algorithms to consider the effect of fading and SNR uncer-
tainty. Section 7 concludes the paper.

2. System model

We consider a Cognitive Radio system with one primary
transmitter and L secondary users. The L nodes sense the
channel to detect the spectral holes. The decisions made by
the secondary users are transmitted to a fusion node via a
reporting MAC for it to make a final decision. This is the most
common architecture for distributed detection and distributed
sensing using distributed sequential detection via noisy
016/j.sigpro.2014.07.009i
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spectrum sensing [1,14]. In order to keep the traffic on the
reporting channel low, we will ensure that a local node
transmits a finite valued message to the fusion center.

Let Xk;l be the observation made at secondary user l at
time k. The fXk;l; kZ1g are independent and identically
distributed (i.i.d.). It is assumed that the observations are
independent across Cognitive Radios. Based on fXn;l;nrkg
the secondary user l transmits Yk;l to the fusion node. It is
assumed that the secondary nodes are synchronized so
that the fusion node receives Yk ¼∑L

l ¼ 1Yk;lþZk, where
fZkg is i.i.d. receiver noise. The fusion center uses fYkg and
makes a decision. The observations fXk;lg depend on
whether the primary is transmitting (Hypothesis H1) or
not (Hypothesis H0) as

Under H0: Xk;l ¼ ζk;l; k¼ 1;2;…;

Under H1: Xk;l ¼ hlSkþζk;l; k¼ 1;2;…;

where hl is the channel gain of the lth user, Sk is the
primary signal and ζk;l is the observation noise at the lth
user at time k. We assume that fζk;l; kZ1g are i.i.d. Let N be
the time to decide on the hypothesis by the fusion node.
We assume that N is much less than the coherence time of
the channel so that the slow fading assumption is valid.
This means that hl is random but remains constant during
the spectrum sensing duration.

The general problem is to develop a distributed algo-
rithm in the above setup which solves the problem:

min EDD ¼Δ Ei½N�
subject to P1ðReject H1Þrα1 & P0ðReject H0Þrα0; ð1Þ
where Pi is the probability measure and Ei the expectation
when Hi is the true hypothesis, iAf0;1g, and 0rα0;α1r1.
We will separately consider E1½N� and E0½N�. It is well known
that for a single node case (L¼1) Wald's SPRT performs
optimally in terms of reducing E1½N� and E0½N� for given
probability of errors. Motivated by the optimality of SPRT for a
single node (and DualCUSUM in [6]), we propose using
DualSPRT in the next section and study its performance.

We use PMD for P1(reject H1) and PFA for P0(reject H0). In
case of EDD, hypothesis under consideration can be under-
stood from the context.

3. Decentralized sequential tests: dualSPRT

In this section we develop DualSPRT algorithm for decen-
tralized sequential detection and also study its performance.

3.1. DualSPRT algorithm

To explain the setup and analysis we start with the
simple case, where the channel gain, hl¼1 for all l0s. We
will consider fading in Section 6. In this algorithm, Sk is
assumed to be fully known. This assumption can be wea-
kened by using averaged energy samples discussed later in
Section 6.1. DualSPRT is as follows:
1.
P
r

Secondary node l, computes at step k,

W0;l ¼ 0;

Wk;l ¼Wk�1;lþ log½f 1;lðXk;lÞ=f 0;lðXk;lÞ�; kZ1;
lease cite this article as: J.K. Sreedharan, V. Sharma, Spectrum se
eporting MAC, Signal Processing (2014), http://dx.doi.org/10.1016
where f 1;l is the density of Xk;l under H1 and f 0;l is the
density of Xk;l under H0 (w.r.t. a common distribution).
2.
 Secondary node l transmits a constant b1 at time k if
Wk;lZγ1;l or transmits b0 when Wk;lr�γ0;l. When Wk;l

does not cross the interval ð�γ0;l; γ1;lÞ, node l does not
transmit anything, i.e.,

Yk;l ¼ b1 IfWk;lZγ1;lgþb0 IfWk;lr�γ0;lg
where γ0;l; γ1;l40 and IfAg denotes the indicator func-
tion of set A. Parameters b1; b0; γ1;l; γ0;l are chosen
appropriately.
3.
 Physical layer fusion is used at the fusion centre, i.e.,
Yk ¼∑L

l ¼ 1Yk;lþZk, where fZkg is the i.i.d. noise at the
fusion node.
4.
 Finally, fusion center calculates

Fk ¼ Fk�1þ log½gμ1
ðYkÞ=g�μ0

ðYkÞ�;
F0 ¼ 0; μ040; μ140; ð2Þ
where g�μ0

is the density of Zk�μ0 and gμ1
is the

density of Zkþμ1, μ0 and μ1 being positive constants
appropriately chosen.
5.
 The fusion center decides about the hypothesis at time
N where

N¼ inffk: FkZβ1 or Fkr�β0g
and β0;β140. The decision at time N is H1 if FNZβ1,
otherwise H0.
Performance of this algorithm depends on (γ1;l; γ0;l;
β1;β0; b1; b0;μ1;μ0). In particular these parameters should
be chosen such that the overall probabilities of error are
less than α1 and α0 respectively. Any prior information
available about H0 or H1 can be used to decide constants
(via, say, formulating this problem in the Bayesian frame-
work; we will comment on this again). Also we choose
these parameters such that the probability of false alarm/
miss-detection, Pfa=Pmd at local nodes is higher than
PFA=PMD. A good set of parameters for given SNR values
can be obtained from our analysis below.

Deciding at local nodes and transmitting decisions to
the fusion node reduces the transmission rate and
transmit energy used by the local nodes in communication
with the fusion node. Also, physical layer fusion in
Step 3 reduces transmission time, but requires synchroni-
zation of different local nodes. This assumption has
been made in other distributed detection/estimation stu-
dies also [6,17]. If synchronization is not possible in a
given system, then some other MAC algorithm, e.g., TDMA
can be used with channel coding. But this will incur
extra delay.

Using sequential tests at SUs and at FC (without
physical layer synchronization and fusion receiver noise)
has been shown to perform well in [7,9]. In the next
subsection we analyze the performance under our setup.
3.2. Performance analysis

We first provide the analysis for the mean detection delay
EDD and then for PFA. The exact analysis is intractable as for
other distributed detection algorithms. Thus we provide an
nsing using distributed sequential detection via noisy
/j.sigpro.2014.07.009i
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Table 1
List of important notations. 1 – DualSPRT; 2 – SPRT-CSPRT; 3 – GLR-SPRT;
4 – GLR-CSPRT.

Notation Meaning

L Number of CRs
Xk;l Observation at CR l at time k
Yk;l Transmitted value from CR l to FC at time k
Yk FC observation at time k
hl Channel gain of the lth CR
ζk;l Observation noise at CR l at time k
Zk FC MAC noise at time k
f i;l , gμ PDF of X1;l under Hi, PDF of Zkþμ

Wk;l Test statistic at CR l at time k
Fk Test statistic at FC at time k ð1Þ
Fk
1
, Fk

0
Test statistics at FC ð2Þ

ξk LLR at FC (1)
fξnk ; kZ1g i.i.d with distribution of ξn , defined in (10), (1)

Fn

n , bF n

n
∑n

k ¼ 1ξ
n

k , ∑
n
k ¼ 1jξnk j (1)

Ai , ΔðAiÞ {all CRs transmit bi under Hi}, Ei½ξkjAi� (1)
γ1;l ; γ0;l Thresholds at CR l (1,2)
g(t) Threshold at CR ð3;4Þ
β1 ; β0 Thresholds at FC
μ1; μ0 Design parameters in FC LLR
b1 ;b0 Transmitting values to the FC at CR ð1;3Þ
bj
i

Transmitting values to the FC at CR ð2;4Þ
N First time Fk crosses ð�β0; β1Þ (1)
N1;N0 First time Fk crosses β1, crosses �β0 (1)

Nl ;N
1
l ;N

0
l

Corresponding values of N, N1, N0 at CR l (1)

Nlðg; cÞ First time Wn;l crosses g(nc) at CR l ð3;4Þ
τβ , Tβ First time Fk

0
crosses �β0, Fk

1
crosses β1 (2)

δi;l ; ρ
2
i;l

Mean and variance of LLR at CR l under Hi

δji;FC
Mean of LLR at FC under Hi when j CRs transmit

tj Time epoch when δj�1
i;FC changes to δji;FC ð1Þ

Tj Time epoch when δj�1
i;FC changes to δji;FC ð2Þ

Fj E½Ftj �1�
Dtot
0
, Dtot

1
∑L

l ¼ 1Dðf 0;ljjf 1;lÞ, ∑L
l ¼ 1Dðf 1;ljjf 0;lÞ

rl, ρl Dðf 0;ljjf 1;lÞ=D0
tot , Dðf 1;ljjf 0;lÞ=D1

tot

τlðcÞ Last time RW with drift δ0;l will be above �j log cj
τðcÞ max1r lr LτlðcÞ
Ri

min1r lr L� log inf tZ0Ei exp �t log
f 1;lðX1;l Þ
f 0;lðX1;lÞ

 !" #
G, g CDF of jξn1j, MGF of jξn1j
ΛðαÞ supλðαλ� log gðλÞÞ
αþ ess supjξn1j
RcðδÞ Bayes Risk of test δ with cost c

First time RW
νðaÞ

log
gμ1 ðZk Þ
g�μ0 ðZk Þ

( )
þ Δ A0

� �
�E0 log

gμ1 ðZk Þ
g�μ0 ðZk Þ

" # 
kZτðcÞþ1g crosses a.
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approximate analysis. We also study the asymptotic perfor-
mance of the algorithm in Section 4 which shows that our
algorithm is asymptotically optimal. However we will see that
the approximate analysis of this section is more accurate for
finite values of parameters than the asymptotic analysis.

KL-divergence of two probability distributions P and Q
on the same measurable space ðΩ;F Þ is defined as

D P JQð Þ ¼
R
log

dP
dQ

dP if P5Q ;

1 otherwise;

8><>: ð3Þ

where P5Q denotes that P is absolutely continuous w.r.t.
Q. More explicitly, at node l, let

δi;l ¼ Ei log
f 1;lðXk;lÞ
f 0;lðXk;lÞ

� �
; ρ2

i;l ¼ VarHi log
f 1;lðXk;lÞ
f 0;lðXk;lÞ

� �
:

Then δ1;l ¼Dðf 1;ljjf 0;lÞ and δ0;l ¼ �Dðf 0;ljjf 1;lÞ. We will
assume δi;l finite throughout this paper. Sometimes we
will also need ρ2

i;lo1. When the true hypothesis is H1, by
Jensen's Inequality, δ1;l40 and when it is H0, δ0;lo0. At
secondary node l, SPRT sum fWk;l; kZ0g is a random walk
with drift given by δi;l under the true hypothesis Hi.

Let Nl ¼ inffk:Wk;l =2ð�γ0;l; γ1;lÞg;N1
l ¼ inf fk:Wk;lZ

γ1;lg and N0
l ¼ inf fk:Wk;lr�γ0;lg: Then Nl ¼minfN0

l ;N
1
l g.

Also let N0 ¼ inf fk: Fkr�β0g and N1 ¼ inffk: FkZβ1g.
Then stopping time of DualSPRT, N¼minðN1;N0Þ.

For simplicity in the rest of this section, we take
γ1;l ¼ γ0;l ¼ γ, β1 ¼ β0 ¼ β, b1 ¼ �b0 ¼ b and μ1 ¼ μ0 ¼ μ.
Of course the analysis will carry over for the general case.

For convenience we summarize the important notation
used in this paper in Table 1. Notation specific to some
algorithms are also mentioned separately in parenthesis.

3.2.1. EDD analysis
At the fusion node Fk crosses β under H1 when a

sufficient number of local nodes transmit b1. The dominant
event occurs when the number of local nodes transmitting
are such that the mean value of the increments of the sum
Fk will just have turned positive. In the following we find
the mean time to this event and then the time to cross
β after this. The EDD analysis is same under hypothesis H0

and H1. Hence we provide the analysis for H1.
The following lemmas provide justification for con-

sidering only the events fNi
lg and fNig for analysis of

EDD ¼ Ei½N�.

Lemma 1. For i¼0,1, PiðNl ¼Ni
lÞ-1 as γ-1 and

PiðN¼NiÞ-1 as γ-1 and β-1.

Proof. From random walk results [19, Chapter IV] we
know that if a random walk has negative drift then its
maximum is finite with probability one. This implies that
PiðNj

lo1Þ-0 as γ-1 for ia j but PiðNi
lo1Þ¼ 1 for any

γo1. Thus PiðNl ¼Ni
lÞ-1 as γ-1. This also implies that

as γ-1, the mean of increments of Fk is positive for H1

and negative for H0. Therefore, PiðN¼NiÞ-1 as γ-1 and
β-1. □

Lemma 2. Under Hi, i¼0,1 and ja i,
(a)
Pl
re
jNl�Ni
lj-0 a.s. as γ-1 and limγ-1Nl=γ ¼

limγ-1Ni
l=γ ¼ 1=Dðf i;ljjf j;lÞ a.s. and in L1.
ease cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
porting MAC, Signal Processing (2014), http://dx.doi.org/10.1
(b)
sen
016
jN�Nij-0 a.s. and lim N=β¼ lim Ni=β a.s. and in L1, as
γ-1 and β -1.
Proof. Under H0,

N0
l IfN0

l oN1
l grNlrN0

l ; ð4Þ

and since P0½N0
l oN1

l �-1 as γ-1, jN0
l �Nlj-0 a.s. as

γ-1. Also from Random Walk results [19, p. 88],
N0

l =γ-1=Dðf 0;ljjf 1;lÞ a.s. and E½N0
l �=γ-1=Dðf 0;ljjf 1;lÞ. Thus

we also obtain Nl=γ-1=Dðf 0;ljjf 1;lÞ a.s. and in L1. Similarly
the corresponding results hold for N and N0 as γ and
β -1. (4) holds in the expected sense also. □
sing using distributed sequential detection via noisy
/j.sigpro.2014.07.009i
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Thus when γ is large, we can approximate E1½Nl� by
γ=Dðf 1;ljjf 0;lÞ. Also under H1, by central limit theorem for
the first passage time Nl

1
(Theorem 5.1, Chapter III in [19]),

N1
l �N γ

δ1;l
;
ρ2
1;lγ

δ31;l

 !
; ð5Þ

where N ða; bÞ denotes Gaussian distribution with mean a
and variance b. From Lemma 2, we can use this result for Nl

also. Similarly we can obtain the results under H0 and at
the fusion node. Let δji;FC be the mean of increments of the
fusion center test sum Fk, under Hi, when j local nodes are
transmitting. Let tj be the point at which the mean of
increments of Fk changes from δj�1

i;FC to δji;FC and let
Fj ¼ E½Ftj �1�, the mean value of Fk just before transition
epoch tj. The following lemma holds.

Lemma 3. Under Hi, i¼0,1, as γ-1, Pi (Decision at time tk
is Hi and tk is the kth order statistics of Ni

1;N
i
2;…;Ni

L) -1.

Proof. From Lemma 1, Pi (Decision at time tk is Hi and tk is
the kth order statistics of Ni

1;N
i
2;…;Ni

L)
ZPiðNi

loNj
l; ja i; l¼ 1;…; LÞ-1; as γ-1. □

We use Lemmas 1–3 and Eq. (5) in the following to
obtain an approximation for EDD when γ and β are large.
Large γ and β are needed for small probability of error.
Then we can assume that the local nodes are making
correct decisions. Although Fk is a randomwalk before t1, it
is not so between tj and tjþ1 for j¼1,…,L. But we assume
that in the following approximation.

Let

ln ¼min j: δj1;FC40 and
β�Fj
δj1;FC

oE tjþ1
� ��E tj

� �( )
:

Fj can be iteratively calculated as

Fj ¼ F j�1þδj1;FCðE½tj��E½tj�1�Þ; F 0 ¼ 0: ð6Þ
Note that δj1;FC ð0r jrLÞ can be found by assuming E1½Yk�
as bj and tj as the jth order statistics of fN1

l ; 0r lrLg. The
Gaussian approximation (5) can be used to calculate the
expected value of the order statistics using the method
given in [20]. This implies that E½tj�0s and hence Fj s are
available offline. By using these values EDD (� E1ðN1Þ) can
be approximated as

EDD � E tln
� �þβ�Fln

δl
n

1;FC

; ð7Þ

where the first term on R.H.S. is the mean time till the
mean of increments becomes positive at the fusion node
while the second term indicates the mean time for Fk to
cross β from tln onward.

3.2.2. PMD=PFA analysis
We provide analysis under H1. PFA analysis is same as

that of PMD analysis with obvious changes. When the
thresholds at local nodes are reasonably large, according
to Lemma 3, with a large probability local nodes are
making the right decisions and tk can be taken as the
order statistics assuming that all local nodes make the
right decisions. Then for missed detection the dominant
event is P1ðN0ot1Þ. Also for reasonable performance we
Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
reporting MAC, Signal Processing (2014), http://dx.doi.org/10.1
should select thresholds such that P1ðN1ot1Þ is small.
Then

PMD ¼ P1ðN0oN1ÞZP1ðN0ot1;N
14t1Þ � P1ðN0ot1Þ: ð8Þ

Under the above conditions, this lower bound should give
a good approximation. In the following, we get an approx-
imation for this.

Let ξk ¼ log½gμ1
ðYkÞ=g�μ0

ðYkÞ�. Then Fk ¼ ξ1þξ2þ⋯þξk
and if we assume that ξk before t1, has mean zero and has
distribution symmetric about zero (e.g., �N ð0;σ2Þ) then
P1ðreject H1 before t1Þ

� ∑
1

k ¼ 1
P1 fFko�βg ⋂

k�1

n ¼ 1
fFn4�βgjt14k

" #
P½t14k�

¼ ∑
1

k ¼ 1
P1 Fko�βj ⋂

k�1

n ¼ 1
fFn4�βg

" #
P1 ⋂

k�1

n ¼ 1
fFn4�βg

" # !
ð1�Φt1 ðkÞÞ

¼ðAÞ ∑
1

k ¼ 1
P1½Fko�βjFk�14�β�P1 inf

1rnrk�1
Fn4�β

� �� 	
ð1�Φt1 ðkÞÞ

Z
ðBÞ ∑

1

k ¼ 1

Z 1

c ¼ 0
P1½ξko�c�f Fk� 1

f�βþcg dc
� 	

1�2P1½Fk�1r�β�
 �ð1�Φt1 ðkÞ
�
;

where Φt1 is the Cumulative Distribution Function of t1.
Since we are considering only fFk; krt1g, we remove the
dependencies on t1. In the above equations (A) is because
of the Markov property of the random walk and (B) is due
to the following lemma. This lemma can be obtained from
[21, p. 525].

Lemma 4. If ξ1 has mean zero and distribution symmetric
about zero

P inf
1rnrk�1

Fn4�θ
� �

Z1�2P½Fk�1r�θ�:

Similarly we can write an upper bound by replacing
P½\k�1

n ¼ 1fFn4�θg� with P½Fk�14�θ]. We can make the
lower bound tighter if we do the same analysis for the
random walk between t1 and t2 with appropriate changes
and add to the above bounds.

3.2.3. Example 1
We apply the DualSPRT on the following example and

compare the EDD and PFA via analysis provided above with
the simulation results. We assume that f 0 and f 1 are
Gaussian with different means. This model is relevant
when the noise and interference are log-normally distrib-
uted [2], and when Xk;l is the sum of energy of a large
number of observations at the secondary nodes at a
low SNR.

Parameters used for simulation are as follows: L¼5,
f 0 �N ð0;1Þ and f 1 �N ð1;1Þ. Also f 0 ¼ f 0;l and f 1 ¼ f 1;l for
1r lrL, and b¼1. We plot PE (¼PFA under H0 and PMD under
H1) and EDD (¼E1½N� or E0½N�) versus β in Figs. 1 and 2
respectively. Here γ, μ and b are fixed for ease of calculation
and they are chosen to provide good performance for the
given PMD=PFA. The figures also contain the results obtained
via analysis. We see a good match in theory and simulations.
For comparison, Fig. 2 also contains asymptotic results which
are presented in Section 4 below.
sensing using distributed sequential detection via noisy
016/j.sigpro.2014.07.009i
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The above example is for the case when Xk;l have the
same distribution for different l under the hypothesis H0 and
H1. The next example considers the general case. Now the
order statistics tln in (7) needs to be appropriately computed.
3.2.4. Example 2
There are five secondary nodes with primary to sec-

ondary channel gain being 0, �1.5, �2.5, �4 and �6 dB
respectively (corresponding post change means are 1, 0.84,
0.75, 0.63, 0.5). f 0 �N ð0;1Þ; f 0 ¼ f 0;l for 1r lrL. Figs. 3
and 4 respectively provide the PFA and EDD via analysis and
simulations. We see a good match.
4. Asymptotic properties of DualSPRT

In this section we prove asymptotic properties of
DualSPRT.
Fig. 1. DualSPRT-comparison between theory

Fig. 2. DualSPRT-comparison between theory an

Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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We use the following notation:

D0
tot ¼ ∑

L

l ¼ 1
Dðf 0;ljjf 1;lÞ; D1

tot ¼ ∑
L

l ¼ 1
Dðf 1;ljjf 0;lÞ

rl ¼
Dðf 0;l J f 1;lÞ

D0
tot

; ρl ¼
Dðf 1;l J f 0;lÞ

D1
tot

:

Let Ai be the event that all the secondary users
transmit bi when the true hypothesis is Hi. Also let ΔðAiÞ
be the mean of increments of Fk when Ai happens, i.e.,
ΔðAiÞ ¼ Ei½ðlog gμ1

ðYkÞ=g�μ0
ðYkÞÞjAi�.

In the rest of this section, local node thresholds are
γ0;l ¼ �rljlog cj; γ1;l ¼ ρljlog cj and fusion center thresholds
are β0 ¼ �jlog cj;β1 ¼ jlog cj.

We will also need

τlðcÞ ¼Δ supfnZ1:Wn;lZ�rljlog cjg; τðcÞ ¼Δ max
1r lr L

τlðcÞ: ð9Þ
and simulation of probability of error.

d simulation of expected detection delay.

sensing using distributed sequential detection via noisy
016/j.sigpro.2014.07.009i
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Fig. 4. DualSPRT-comparison between theory and simulation of expected detection delay.
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Let

ξn ¼max
θAΘ

log
gμ1

ðZ1þθÞ
g�μ0

ðZ1þθÞ

" #
; ð10Þ

where Θ¼ fk1b1þk0b0; k1; k0 ¼ 0;1;…; L; k1þk0rLg. Also
let fξnk ; kZ1g be i.i.d. with the distribution of ξn. Then for
α41, E½ðξnÞαþ1�o1 if E½ðlog gμ1

ðZ1þθÞ=g�μ0
ðZ1þθÞÞαþ1�

o1 for all θAΘ.

Theorem 1. For all l and for some α41, let
Ei½jlog f 1;lðX1;lÞ=f 0;lðX1;lÞjαþ1�o1 and E½ðξn1Þαþ1�o1,
i¼0,1. Then, under Hi,

lim
c-0

N
jlog cjr

1

Di
tot

þMi a:s: and in L1;

where Mi ¼ Ci=ΔðAiÞ, C0 ¼ �½1þE½ξn1�=D0
tot � and C1 ¼

½1þE½ξn1�=D1
tot �.

Proof. See Appendix A.

Fig. 2 compares the asymptotic upper bounds of EDD
in Theorem 1 with the approximations provided in
Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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Section 3.2 and simulations. We see that the approximate
analysis of Section 3.2 provides much better approxima-
tion at threshold values of practical interest in Cognitive
Radio. Perhaps this is the reason, the asymptotically
optimal schemes do not necessarily provide very good
performance at operating points of practical interest.

Next we consider the asymptotics of PFA and PMD. Let

Ri ¼ min
1r lr L

� log inf
tZ0

Ei exp �t log
f i;lðX1;lÞ
f j;lðX1;lÞ

 !" # !
; j¼ 1� i:

Let G be the distribution of jξn1j. Also let g be the
corresponding moment generating function. Let
ΛðαÞ ¼ supλðαλ� log giðλÞÞ and αþ ¼ ess supjξn1j. Let

s η

 �¼

η
αþ if ηZΛðαþ Þ;

η

Λ�1ðηÞ
if ηAð0;Λðαþ ÞÞ:

8>><>>: ð11Þ
Theorem 2. Let gðλÞo1 in a neighborhood of zero. Then,
(a)
sen
016
limc-0 PFA=c¼ 0 if for some 0oηoR0, sðηÞ41.
sing using distributed sequential detection via noisy
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(b)
Pl
re
limc-0 PMD=c¼ 0 if for some 0oηoR1, sðηÞ41.
Proof. See Appendix B.

Remark 1. When αþ ¼1 which is generally true,
Λðαþ Þ ¼1 [22] and in Theorem 2(a) and 2(b) we need
to consider only RioΛðαþ Þ.

Remark 2. In [6, Lemma 1 Appendix A], it is proved that
log likelihood ratio converts a large class of distributions
into light tailed distributions and then gðλÞ is finite in a
neighborhood of zero.

We compare the asymptotic results obtained in
Theorems 1 and 2 with that of SPRT with all the data
available at the local nodes centrally without noise. Let Nct

be the stopping time of such an SPRT. Then, from [23,
Theorem 2.11.1 and 2.11.2],

lim
c-0

Ei½Nct �
jlog cj ¼

1

Di
tot

ð12Þ

lim
c-0

log 1=PFA

jlog cj -1; lim
c-0

log 1=PMD

jlog cj -1: ð13Þ

Theorem 2 implies the asymptotics (13) on PFA and PMD for
DualSPRT. Comparing Theorem 1 with (12), we see that the
rates of convergence of DualSPRT are optimal. For the
limits to equal, we needM0 andM1 to be zero. In Section 4.1
we compute M0 and M1 for Gaussian fusion center noise.

We can consider the asymptotic performance in the
Bayesian framework also. Then the two hypotheses H0 and
H1 are assumed to have known prior probabilities π and
1�π respectively. A cost c ðZ0Þ is assigned to each time
step taken for decision. Let Wi40; i¼ 0;1 be the cost of
falsely rejecting Hi. Then Bayes risk of a test δ with
stopping time N is defined as

RcðδÞ ¼ π½cE0ðNÞþW0P0freject H0g�
þð1�πÞ½cE1ðNÞþW1P1freject H1g�: ð14Þ

Optimizing (14) makes sense evenwhen one does not have
prior π (i.e., within the frequentist framework) because
then taking π and Wi appropriately, one can think of
selecting a decision rule that asymptotically minimizes a
weighted sum of Ei½N� and Pi½reject Hi�; i¼ 1;2.

Let Rcðδcent:Þ and RcðδDualSPRT Þ be the Bayes's Risk of the
optimal centralized SPRT without considering fusion cen-
ter noise and of DualSPRT respectively. Then [11, p. 2076],

lim
c-0

Rcðδcent:Þ
cjlog cj ¼ π

D0
tot

þ1�π
D1
tot

 !
:

From Theorems 1, 2(a) and 2(b), using (14), for DualSPRT
with fusion center noise,

lim
c-0

RcðδDualSPRT Þ
cjlog cj ¼ π

D0
tot

þ1�π
D1
tot

þC

 !
;

where C ¼M0πþM1ð1�πÞ. The constant C can be made
arbitrarily small by making M0 and M1 small.
ease cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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4.1. Example-Gaussian distribution

In the following we apply Theorems 1 and 2 when the
fusion center noise is Gaussian N ð0;σ2

FCÞ. We take μ1 ¼ μ0 ¼
μ40 and b1 ¼ �b0 ¼ b40. For Theorem 1, ΔðA0Þ ¼
�2μLb=σ2

FC and ΔðA1Þ ¼ 2μLb=σ2
FC . Therefore M0 and M1 in

Theorem 1 -0 if L-1 and/or b-1. This also happens if
σ2
FC-0.
Using Remark 1, the condition in Theorem 2(a) is

σ2
FCη=ð4μ2

ffiffiffiffiffiffi
2η

p
þ2μLbÞ41 for some 0oηoR0 and that

for Theorem 2(b) is the same for some 0oηoR1. Combin-
ing these two, it is sufficient to satisfy the later condition
with 0oηominðR0;R1Þ. For Gaussian input observations
at the local nodes, assuming f 1;l ¼ f 1, f 0;l ¼ f 0 for 1r lrL,
we get δi;l ¼ δi and ρi;l ¼ ρi, Ri ¼ δ2i =2ρ

2
i .

Remark 3. From the analysis provided in Section 3.2, it is
possible to provide beforehand, atleast approximately, the set
of values for thresholds to achieve desired error probabilities
and these can be used to design the test. Alternatively the
asymptotic analysis provided in this section can also be used
to design the parameters. Now we fix L. The conditions in
Theorem 2 provide bounds for the choice of μ and b (e.g., in
the above Gaussian example it provides upper-bounds). The
thresholds γ0;l; γ1;l;β0 and β1 are taken as �rljlog cj;ρlj
log cj; �jlog cj and jlog cj respectively as functions of c
complying to the analysis in this section. According to
Theorem 2, for lower values of c, c can be considered as an
upper bound for PFA and PMD. Such a c for meeting the
specified PFA and PMD can then be used to calculate the
threshold values.

5. Improved decentralized sequential tests: SPRT-CSPRT

This section considers some improvements over Dual
SPRT. The performance of the improved algorithms is
compared with existing decentralized schemes.

New algorithms: SPRT-CSPRT and DualCSPRT. In
DualSPRT presented in Section 3.1, observations fYkg to
the fusion center are not always identically distributed. Till
the first transmission from secondary nodes, these obser-
vations come from i.i.d. noise distribution, but not after
that. Since the non-asymptotic optimality of SPRT is
known for i.i.d. observations only [4], using SPRT at the
fusion center is not optimal.

We improve DualSPRT with the following modifica-
tions. Steps (1)–(3) (corresponding to the algorithm run
at the local nodes) are same as in DualSPRT. The steps (4)
and (5) are replaced by:
4.
se
016
Fusion center runs two algorithms:

F1k ¼ ðF1k�1þ log½gμ1
ðYkÞ=gZðYkÞ�Þþ ; F10 ¼ 0; ð15Þ

F0k ¼ ðF0k�1þ log½gZðYkÞ=g�μ0
ðYkÞ�Þ� ; F00 ¼ 0; ð16Þ

where ðxÞþ ¼maxð0; xÞ, ðxÞ� ¼minð0; xÞ, μ1 and μ0 are
positive constants, gZ is the pdf of i.i.d. noise fZkg at the
fusion center and gμ is the pdf of μþZk.
5.
 The fusion center decides about the hypothesis at time

inffk: F1kZβ1 or F0kr�β0g
nsing using distributed sequential detection via noisy
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and β0;β140. The decision is H1 if F1kZβ1 and H0 if
F0kr�β0.

The following discussion provides motivation for this
test.
1.
P
r

If the SPRT sum defined in (2) goes below zero it delays
in crossing the positive threshold β1. Hence if we keep
SPRT sum at zero whenever it goes below zero, it
reduces EDD. This happens in CUSUM [24]. Similarly
one can use a CUSUM statistic under H0 also. These
ideas are captured in (15) and (16).
2.
 The proposed test is also capable of reducing false
alarms caused by noise Zk before first transmission at
t1 from the local nodes. For Fk

1
and Fk

0
to move away

from zero, the mean of increments should be positive
and negative respectively. Let bμk ¼ E½Yk� at time k. Then,

Ebμk
log

gμ1
ðYkÞ

gZ ðYkÞ

� �
¼D gbμk

JgZ
� �

�D gbμk
Jgμ1

� �
: ð17Þ

Hence before t1, positive mean value of increments is not
possible. After t1 under H1 (assuming the local nodes make
correct decisions, the justification for which is provided in
Section 3), the mean of increments becomes more positive.
Similarly for Fk

0
. But in case of DualSPRT, SPRT sum

at the fusion center has the increments given by
log gμ1

ðYkÞ=g�μ0
ðYkÞ. This is difficult to keep zero only

before t1 and thus creates more errors due to noise Zk.

3.
 Even though the problem under consideration is

hypothesis testing, this is essentially a change detection
problem at the fusion center. The observations at the
fusion center have the distribution of noise before t1
and after t1 the mean changes. But in our scenario, this
is a composite sequential change detection problem
with the observations that are not i.i.d. and we look for
change in both directions. Thus, it is difficult to use
existing algorithms available for sequential change
detection. Nevertheless our test (15)–(16) provides a
guaranteed performance in this scenario.

We consider one more improvement. When a local
Cognitive Radio SPRT sum crosses its threshold, it trans-
mits b1=b0. This node transmits till the fusion center SPRT
sum crosses the threshold. If it is not a false alarm, then its
SPRT sum keeps on increasing (decreasing). But if it is a
false alarm, then the sum will eventually move towards
the other threshold. Hence instead of transmitting b1/ b0
the Cognitive Radio can transmit a higher/lower value in
an intelligent fashion. This should improve the perfor-
mance. Thus we modify step (3) in DualSPRT as

Yk;l ¼ ∑
4

i ¼ 1
b1i IfWk;lA ½γ1þði�1ÞΔ1; γ1þ iΔ1Þg

þb0i IfWk;lA ½�γ0�ði�1ÞΔ1; �γ0� iΔ0Þg; ð18Þ

where Δ1 and Δ0 are the parameters to be tuned at the
Cognitive Radio. 4Δ1 and 4Δ0 are taken as 1. The drift
under H1 (H0) is a good choice for Δ1 (Δ0).

We call the algorithmwith the above two modifications
as SPRT-CSPRT (with ‘C’ as an indication about the motiva-
tion from CUSUM).
lease cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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If we use CSPRT at both the secondary nodes and the
fusion center with the proposed quantization methodol-
ogy (we call it DualCSPRT) it works better as we will show
via simulations in Section 5.1. This test permits the local
nodes to make decisions faster than normal SPRT due to
clipping at zero level, but with more errors. The influence
of the increase in number of false transmissions from local
nodes is nullified by the repeated use of CUSUM-like
statistic at the fusion node with appropriate choice of
parameters.

5.1. Performance comparison

Throughout the rest of this section we use γ1;l ¼ γ0;l ¼ γ,
β1 ¼ β0 ¼ β and μ1 ¼ μ0 ¼ μ for the simplicity of simula-
tions and analysis.

We compare DualSPRT, SPRT-CSPRT and DualCSPRT via
simulations.

We have used the following parameters. There are 5
nodes (L¼5) and f 0;l �N ð0;1Þ, for 1r lrL. Primary to
secondary channel gains are 0, �1.5, �2.5, �4 and �6 dB
respectively (the corresponding post change means of
Gaussian distribution with variance 1 are 1, 0.84, 0.75,
0.63 and 0.5). We assume Zk �N ð0;5Þ and the mean of
increments of DualSPRT and SPRT-CSPRT at the fusion
center is taken as 2μYk, with μ being 1. We also take
D0 ¼D1 ¼ 0, fb11; b12; b13; b14g ¼ f1;2;3;4g, fb01; b02; b03;b04g ¼
f�1; �2; �3; �4g and b1¼�b0¼1 (for DualSPRT). Para-
meters γ and β are chosen from a range of values to
achieve a particular PFA. Fig. 5 provides the EDD and PMD

via simulations. We see a significant improvement in EDD
compared to DualSPRT. The difference increases as PMD

decreases. The performance under H0 is similar.
Performance comparisons with the asymptotically opti-

mal decentralized sequential algorithms which do not
consider fusion center noise (DSPRT [12], Mei's SPRT
[11]) are given in Fig. 6. Note that DualSPRT and SPRT-
CSPRT include fusion center noise. Here we take
f 0;l �N ð0;1Þ, f 1;l �N ð1;1Þ for 1r lrL and Zk �N ð0;1Þ.
We find that the performance of SPRT-CSPRT is close to
that of DSPRT (which is second order asymptotically
optimal) and better than Mei's SPRT (which is first order
asymptotically optimal). Similar comparisons were obtained
with other data sets.

6. Unknown received SNRs and fading

This section considers the extensions of DualSPRT and
SPRT-CSPRT to take care of the SNR uncertainty and the
slow fading between the primary user and a Cognitive
Radio. Since the transmissions from CR to FC are in CR
network, we assume reporting channel to FC as AWGN
only. This assumption is commonly made [1,2].

6.1. Different and unknown SNRs

We consider the case where the received signal power
from the PU to a CR node is fixed but not known to the
local Cognitive Radio nodes. This can happen if the
transmit power of the primary is not known and/or there
is unknown shadowing. Now we limit ourselves to the
sensing using distributed sequential detection via noisy
016/j.sigpro.2014.07.009i
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;

Fig. 5. Comparison among DualSPRT, SPRT-CSPRT and DualCSPRT for different SNR's between the primary and the secondary users, under H1.

Fig. 6. Comparison among DualSPRT, SPRT-CSPRT, Mei's SPRT and DSPRT under H1.
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energy detector where the observations Xk;l are average
energy of M samples received by the lth Cognitive Radio
node. Then for somewhat large M, the distributions of Xk;l

under H0 and H1 can be approximated by Gaussian
distributions: f 0;l �N ðσ2

l ;2σ
4
l =MÞ and f 1;l �N ðPlþσ2

l ;

2ðPlþσ2
l Þ2=MÞ, where Pl is the received power and σ2

l is
the noise variance at the lth CR node. Under low SNR
conditions ðPlþσ2

l Þ2 � σ4
l and hence Xk;l are Gaussian

distributed with mean change under H0 and H1. Now
taking Xk;l�σ2

l as the data for the detection algorithm at
the lth node, since Pl is unknown we can formulate this
problem as a sequential hypothesis testing problem with

H0:θ¼ 0; H1:θZθ1; ð19Þ

where θ is Pl under H1 and θ1 is appropriately chosen.
The problem

H0:θrθ0; H1:θZθ1; ð20Þ
Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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subject to

Pθfreject H0grα for θrθ0 and Pθfreject H1grβ for θZθ1

for exponential family of distributions is well studied
in [25]. The following algorithm of Lai [25] is asymptotically
Bayes optimal and hence we use it at the local nodes
instead of SPRT. Let θAA¼ ½a1; a2�. Define

Wn;l ¼max ∑
n

k ¼ 1
log

f θ̂n ðXkÞ
f θ0 ðXkÞ

; ∑
n

k ¼ 1
log

f θ̂n ðXkÞ
f θ1 ðXkÞ

" #
;

Nlðg; cÞ ¼ inffn:Wn;lZgðncÞg;

where gðÞ is a time varying threshold and c40 is a design
parameter. The function g satisfies gðtÞ � logð1=tÞ as t-0
and is the boundary of an associated optimal stopping
problem for the Wiener process [25]. θ̂n is the Maximum-
Likelihood estimate of θ bounded by a1 and a2. For
Gaussian f0 and f1, θ̂n ¼maxfa1;min½Sn=n; a2�g. At time
sensing using distributed sequential detection via noisy
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http://dx.doi.org/10.1016/j.sigpro.2014.07.009
http://dx.doi.org/10.1016/j.sigpro.2014.07.009
http://dx.doi.org/10.1016/j.sigpro.2014.07.009


J.K. Sreedharan, V. Sharma / Signal Processing ] (]]]]) ]]]–]]] 11
Nlðg; cÞ decide upon H0 or H1 according as θ̂Nlðg;cÞrθn or
θ̂Nlðg;cÞZθn

; where θn is obtained by solving Dðf θn jjf θ0 Þ
¼Dðf θn jjf θ1 Þ.

For our case where H0:θ¼ 0, unlike in (20) where
H0:θr0, E0½Nlðg; cÞ� largely depends upon the value θ1. As
θ1 increases, E0½Nlðg; cÞ� decreases and E1½Nlðg; cÞ� increases.
If PlA ½P ; P � for all l then a good choice of θ1, is ðP�PÞ=2.

6.1.1. GLR-SPRT
First we modify DualSPRT. In the distributed setup with

the received power at the local nodes unknown, the local
nodes will use the Lai's algorithm mentioned above while
the fusion node runs the SPRT. All other details remain
same. We call this algorithm GLR-SPRT.

6.1.2. GLR-CSPRT
This is a modified version of SPRT-CSPRT. Here, we

modify GLR-SPRT to GLR-CSPRT with appropriate change
in quantization and using CSPRT at the fusion center
instead of SPRT. The quantization (18) is changed in the
Fig. 7. Comparison among SPRT-CSPRT, GLR-SPRT and GLR-CSPRT for diffe

Fig. 8. Comparison among SPRT-CSPRT, GLR-SPRT and GLR-CSPRT for diffe

Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
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following way: if θ̂NZθn, let I1 ¼ ½gðkcÞ; gðkc3 ΔÞÞ,
I2 ¼ ½gðkc3ΔÞ; gðkc2 ΔÞÞ, I3 ¼ ½gðkc2ΔÞ; gðkcΔÞÞ and
I4 ¼ ½gðkcΔÞ;1Þ. Yk;l ¼ b1n if Wk;lAIn for some n. If
θ̂Nrθn we will transmit from fb01; b02; b03; b04g under the
same conditions. Here, Δ is a tuning parameter and
0r3Δr1.

The performance comparison of GLR-SPRT and GLR-
CSPRT for the example in Section 5.1 (with Zk �N ð0;1Þ) is
given in Figs. 7 and 8. Here Δ¼ 0:25. As the performance
under H1 and H0 are different, we give the values under both.
We can see that GLR-SPRT is always inferior to
GLR-CSPRT. For EDD under H1, interestingly GLR-CSPRT has
lesser values than that of SPRT-CSPRT for PFA40:02 (note
that SPRT-CSPRT has complete knowledge of the SNRs),
while under H0 it has higher values than SPRT-CSPRT.
6.2. Channel with fading

In this section we consider the system where the
channels from the primary transmitter to the secondary
rent SNR's between the primary and the secondary users under H1.

rent SNR's between the primary and the secondary users under H0.

sensing using distributed sequential detection via noisy
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Fig. 9. Comparison among DualSPRT, GLR-SPRT and GLR-CSPRT with slow fading between the primary and the secondary users under H1.

Fig. 10. Comparison among DualSPRT, GLR-SPRT and GLR-CSPRT with slow fading between the primary and the secondary users under H0.
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nodes have fading ðhla1Þ. We assume slow fading, i.e., the
channel coherence time is longer than the hypothesis
testing time.

When the fading gain hl is known to the lth secondary
node then this case can be considered as the different SNR
case as in the example given in Section 3.2.4. Thus we
consider the case where the channel gain hl is not known
to the lth node.

We consider the energy detector setup of Section 6.1.
However, now Pl, the received signal power at the local
node l is random. If the fading is Rayleigh distributed then
Pl has exponential distribution. The hypothesis testing
problem becomes

H0: f 0;l �N ð0;σ2Þ;H1: f 1;l �N ðθ;σ2Þ ð21Þ

where θ is random with exponential distribution and σ2 is
the variance of noise. We will assume that σ2 is known at
the nodes.
Please cite this article as: J.K. Sreedharan, V. Sharma, Spectrum
reporting MAC, Signal Processing (2014), http://dx.doi.org/10.1
We are not aware of this problem being handled via
sequential hypothesis testing before. However we use Lai's
algorithm in Section 6.1 where we take θ1 to be the
median of the distribution of θ, i.e., PðθZθ1Þ ¼ 1=2 or
mean of θ. These seem good choices for θ1 as a compro-
mise between E0½N� and E1½N�.

We apply the technique on GLR-SPRT and GLR-CSPRT.
We use an example where σ2 ¼ 1;θ� expð1Þ, Var(Zk)¼1,
L¼5 and θ1 as the mean of θ. The performance of these
algorithms are compared with that of DualSPRT (with
perfect channel state information) in Figs. 9 and 10.
The results are comparable even though the primary is
completely unknown except the knowledge of fading
distribution.

7. Conclusions

This paper presents fast algorithms for cooperative
spectrum sensing satisfying reliability constraints. We
sensing using distributed sequential detection via noisy
016/j.sigpro.2014.07.009i
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have presented and analyzed DualSPRT, a decentralized
sequential hypothesis test. Simulation results corroborate
the theoretical study of DualSPRT. Asymptotic properties
of DualSPRT are also explored and its performance can
approach asymptotically Bayes optimal tests. Improve-
ment over DualSPRT using CUSUM statics for the fusion
center test leads to another algorithm in which the
selection of parameters is easy to choose apart from
performance enhancement. Numerical experiments show
that this algorithm performs as well as an asymptotic
order-2 optimal algorithm without fusion center noise,
proposed in the literature. We further extend our algo-
rithms to cover the case of unknown SNR and channel
fading and obtain satisfactory performance compared to
perfect channel state information case.
Appendix A. Proof of Theorem 1

We will prove the theorem under H0. The proof under
H1 will follow in the same way.

Let νðaÞ be the stopping time when a random walk
starting at zero and formed by the sequence
flog gμ1ðZkÞ=g�μ0ðZkÞ þ ðΔðA0Þ�E0½log gμ1ðZkÞ=g�μ0ðZkÞ�Þ; kZ
τðcÞþ1g (with � ve drift under H0) crosses a. Then,

NrN0rτðcÞþνð�jlog cj�FτðcÞþ1Þ:

Therefore,

N
jlog cjr

τðcÞ
jlog cjþ

νð�jlog cj�FτðcÞþ1Þ
jlog cj : ðA:1Þ

We consider the first term on the R.H.S. of (A.1). From [19,
Remark 4.4, p. 90] as c-0, τlðcÞ-1 a.s. and
limc-0τlðcÞ=jlog cj ¼ �rl=δ0;l ¼ 1=D0

tot a.s. Therefore,

τðcÞ
jlog cj-max

l
� rl
δ0;l


 �
¼ 1

D0
tot

a:s: ðA:2Þ

Furthermore, from [26, proof of Theorem 1(i) ) (ii) p.
871], it can be seen that fτlðcÞ=jlog cjg is uniformly integr-
able for each l. Therefore, fτðcÞ=jlog cjg is also uniformly
integrable and hence,

E0½τðcÞ�
jlog cj -

1

D0
tot

: ðA:3Þ

The second term in R.H.S. of (A.1)

νð�jlog cj�FτðcÞþ1Þ
jlog cj rνð�jlog cjÞ

jlog cj þνð�FτðcÞþ1Þ
jlog cj : ðA:4Þ

We know, from [19, Chapter III], as c-0

νð�jlog cjÞ
jlog cj -� 1

ΔðA0Þ
a:s: and in L1: ðA:5Þ

Next consider νð�FτðcÞþ1Þ. Let Fn

k be a random walk
formed from ξnk . It can be shown that Fn

k stochastically
dominates Fk and thus we can make Fn

kZFk a.s. for all
kZ0. Then,

νð�FτðcÞþ1Þ
jlog cj r

νð�Fn

τðcÞþ1Þ
jlog cj :
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Also,

Fn

τðcÞþ1

jlog cj ¼
Fn

τðcÞþ1

τðcÞþ1
τðcÞþ1
jlog cj -E ξn1

h i 1

D0
tot

a:s:

Thus,

νð�Fn

τðcÞþ1Þ
jlog cj ¼ νð�Fn

τðcÞþ1Þ
Fn

τðcÞþ1

Fn

τðcÞþ1

jlog cj-
�1

ΔðA0Þ
E½ξn1�
D0
tot

a:s: ðA:6Þ

From (A.1) to (A.6),

lim
c-0

N
jlog cjr

1

D0
tot

� 1

ΔðA0Þ
E½ξn1�
D0
tot

a:s:

Now we show L1 convergence. For α41,

E0½νð�Fn

τðcÞþ1Þα�
jlog cjα ¼ 1

jlog cjα
Z jlog cj

0
E0 νð�xÞα Fn

τðcÞþ1 ¼ x
��� i

dPFn

τðcÞ þ 1
xð Þ

h

þ 1
jlog cjα

Z 1

jlog cj
E0 νð�xÞα� �

dPFn

τðcÞ þ 1
xð Þ

rE0½νð�jlog cjÞα�
jlog cjα þ

Z 1

jlog cj

E0½νð�xÞα�
xα

xα

jlog cjα dPFn

τðcÞ þ 1
xð Þ:

ðA:7Þ

When �ve part of the increments of random walk of νðtÞ
has finite αth moment [19, Chapter 3, Theorem 7.1],
E0½νð�xÞα�=xα-ð�1=ΔðA0ÞÞα as x-1. Thus for any
ϵ40, ( M such that

E0½νð�xÞα�
xα

r ϵþ �1
ΔðA0Þ

 !α !
for x4M:

Take c1 such that jlog cj4M for coc1. Then, for coc1,

Z 1

j log cj

E0½νð�xÞα�
xα

xα

jlog cjα dPFn

τðcÞ þ 1
xð Þr

ϵþ �1

ΔðA0Þ

 !α

jlog cjα

Z 1

jlog cj
xα dPFn

τðcÞ þ 1
xð Þr

ϵþ �1
ΔðA0Þ

 !α

jlog cjα ; E0 ðFn

τðcÞþ1Þα
h i

:

ðA:8Þ

Since limc-0τðcÞ=jlog cj ¼ 1=D0
tot a.s. and fτðcÞα=jlog cjαg

is uniformly integrable, when E0½ðlog f 1;lðX1;lÞ=f 0;lðX1;lÞÞαþ1�
o1; 1r lrL and E½ðξn1Þαþ1�o1, we get, [19, Remark 7.2,
p. 42],

lim
c-0

E0½ðFn

τðcÞþ1Þα�
jlog cjα ¼ E½ðξn1Þα�

D0
tot

;

and

sup
c40

E0½ðFn

τðcÞþ1Þα�
jlog cjα o1: ðA:9Þ

From (A.7) and (A.9), for some 14δ40,

sup
δ4 c40

E0½νð�Fn

τðcÞþ1Þα�
jlog cjα r sup

δ4c40

E0½νð�jlog cjÞα�
jlog cjα

þ ϵþ �1

ΔðA0Þ

 !α" #
sup

δ4c40

E0½ðFn

τðcÞþ1Þα�
jlog cjα o1:
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1 For a random walk Wn ¼∑n
i ¼ 1Xi, with stopping times

Ta ¼ inffnZ1:Wnrag, Tb ¼ inffnZ1:WnZbg and Ta;b ¼minðTa ; TbÞ,
ao0ob, let s0 be the non-zero solution to Mðs0Þ ¼ 1, where M denotes
the M.G.F. of Xi. Then, s0o0 if E½Xi�40, and s040 if E½Xi�o0 and
E½expðs0WTa;b

Þ� ¼ 1 [28, p. 7879]. Then it can be shown that
PðWTa Þrexpð�s0aÞ when E½Xi�40 and PðWTb

Þrexpð�s0bÞ when
E½Xi�o0.
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Therefore, fνð�Fn

τðcÞþ1Þ=jlog cjg is uniformly integrable
and hence, from (A.6),

lim
c-0

E0½νð�Fn

τðcÞþ1Þ�
jlog cj r� 1

ΔðA0Þ
:
E½ξn1�
D0
tot

:

This, with (A.1), (A.3), (A.4) and (A.5), implies that (since ϵ
can be taken arbitrarily small),

lim
c-0

E0½N�
jlog cjr

1

D0
tot

þM0;

where

M0 ¼ � 1

ΔðA0Þ
1þE½ξn1�

D0
tot

" #
:

Similarly we can prove

lim
c-0

E1½N�
jlog cjr

1

D1
tot

þM1;

where

M1 ¼
1

ΔðA1Þ
1þE½ξn1�

D1
tot

" #
:

Appendix B. Proof of Theorem 2

We prove the result for PFA. For PMD it can be proved in
the same way.

Probability of False Alarm can be written as

P0ðReject H0Þ ¼ P0½FA upto τðcÞ�þP0½FA after τðcÞ�: ðB:1Þ
Consider the first term in the R.H.S. of (B.1). Take Fn

k as
in the proof of Theorem 1 with Fn

kZFk a.s. for all kZ0 and
hence

P0½FA upto τðcÞ�rP0 sup
0rkrτðcÞ

Fn

kZ jlog cj
" #

¼ P0 ∑
τðcÞ

k ¼ 0
jξnkjZ jlog cj

" #
: ðB:2Þ

From [27, Theorem 1.3], for 0oηoRl
0 ¼ � log inf tZ0

E0½e� t log f 1;lðX1;l Þ=f 0;lðX1;lÞ�, E0½eη τlðcÞ�o1. Combining this fact
with τðcÞo∑L

l ¼ 1τlðcÞ and the fact that τlðcÞ are indepen-
dent of each other (see (9)) yields E0½eητðcÞ�oE0
½e∑L

l ¼ 1ητlðcÞ�o1, for 0oηoR0 ¼minl R
l
0. Therefore, from

Markov inequality, with k1 ¼ E0½eητðcÞ�,
P½τðcÞ4t�rk1 exp ð�ηtÞ: ðB:3Þ

Let bF n

n ¼∑n
k ¼ 1jξ

n

k j. Then, with (B.3), the expected value of

jξnkj being positive and with exponential tail assumption of
G(t), from [22, Theorem 1, Remark 1], (B.2) is

P0½bF n

τðcÞ4 jlog cj�rk2 expð�sðηÞjlog cjÞ; ðB:4Þ

for any 0oηoR0 where k2 is a constant and sðηÞ is defined
in (11). Therefore,

P0½FA upto τðcÞ�
c

rk2
csðηÞ

c
-0; ðB:5Þ

if sðηÞ41 for some η.
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Now we consider the second term in (B.1),

P0½FA after τðcÞ� ¼ P0½FA after τðcÞ; A0�þP0½FA after τðcÞ; ðA0Þc�
Since events fFA after τðcÞg and ðA0Þc are mutually exclu-
sive, the second term in the above expression is zero. Now
consider P0½FA after τðcÞ; A0�. For 0oro1,

P0½FA after τðcÞ; A0�
rP0

h
Random walk with drift ΔðA0Þ and initial value FτðcÞþ1

crosses jlog cj
i

rP0

h
Random walk with drift ΔðA0Þ and FτðcÞþ1

rrjlog cj crosses jlog cj
i

þP0

h
Random walk with drift ΔðA0Þ and FτðcÞþ1

4rjlog cj crosses jlog cj
i

rP0

h
Random walk with drift ΔðA0Þ and FτðcÞþ1

rrjlog cj crosses jlog cj
i

þP0½FτðcÞþ14rjlog cj�: ðB:6Þ
Considering the first term in the above expression,

P0 Random walk with drift Δ A0
� �

and FτðcÞþ1

h�
rr log c crosses log c

i�
=c

������������
r
�
P0 Random walk with drift Δ A0

� �
and FτðcÞþ1

h
¼ r log c crosses log cj�

�
=c

���������
r
ðAÞexpð�ð1�rÞjlog cjs0Þ

c
¼ cð1� rÞs0

c
-0; ðB:7Þ

if ð1�rÞs041. Here ðAÞ follows from [28, p. 7879],1 where s0

is positive and it is the solution of E0½es
0 log gμ1 ðYkÞ=g � μ0

ðYkÞj
A0� ¼ 1: We choose s041 and 0oro1 to satisfy
ð1�rÞs041.

Consider the second term in (B.6). Using the stochastic
dominance of fFkg by fbF n

kg,

P0½FτðcÞþ14rjlog cj�rP0½bF n

τðcÞþ14rjlog cj�:

We have P½τðcÞþ14t� ¼ P½τðcÞ4t�1�rk01 exp ð�ηtÞ,
where k01 ¼ eηE0½eητðcÞ�. Therefore, following (B.4),

P0½FτðcÞþ14rjlog cj�
c

rk02
crsðηÞ

c
-0;

if rsðηÞ41 and k02 is a constant. We can choose sðηÞ41 as
in (B.5). Then 1=sðηÞorr1�1=s0.
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