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Abstract—We consider nonparametric sequential hypothesis
testing when the distribution under null hypothesis is fully
known and the alternate hypothesis corresponds to some other
unknown distribution. We use easily implementable universal
lossless source codes to propose simple algorithms for such a
setup. These algorithms are motivated from spectrum sensing
application in Cognitive Radios. Universal sequential hypothesis
testing using Lempel Ziv codes and Krichevsky-Trofimov estima-
tor with Arithmetic Encoder are considered and compared for
different distributions. Cooperative spectrum sensing with mul-
tiple Cognitive Radios using universal codes is also considered.
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Hypothesis Testing, Universal Testing, Universal Source Codes

I. INTRODUCTION

Cognitive Radio (CR) technology has been proposed as
a working solution for shortage of the spectrum due to the
increase in wireless services. Cognitive users are the users
who transmit in a frequency band licensed to other (primary)
users in such a way that the primary users are not affected.
It is the responsibility of the secondary users (Cognitive
Radios) to identify the primary (licensed) user’s spectrum
usage via spectrum sensing. Given the noise, interference and
channel uncertainties it is difficult for the secondary users to
identify such opportunities reliably. Hence spectrum sensing
has become one of the main challenges faced by CRs.

Spectrum sensing problem can be formulated in different
ways, one of them being reducing the number of samples
taken for deciding if a primary is transmitting or not. In
this setting sequential hypothesis testing using Sequential
Probability Ratio Test (SPRT) minimizes the mean number of
samples used ([17], [20]). In the other formulation, one may
decide to know when a primary turns ON and when it turns
OFF via detection of change algorithms. Spectrum sensing
algorithms based on sequential hypothesis testing are explored
in [10], [27] and sequential change detection is studied in [2],
[14].

Here we consider sequential hypothesis testing as it is
useful when the status of the primary is known to change
very slowly, e.g., detecting usage of idle TV bands, which
is targeted as the primary application of Cognitive Radios.
We explore the case where the noise statistics under no
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primary transmission is fully known to the secondary node,
but the channel gains, modulation schemes etc. of primary
transmissions is not available to the secondary user. This is
the most common scenario in the CR setup.

The sequential methods in case of uncertainties are stud-
ied in [15], [27] for parametric family of distributions. For
nonparametric sequential methods, [17] provides separate al-
gorithms for different setups like changes in mean, changes
in variance etc. In this paper we propose a unified simple
universal sequential hypothesis testing algorithm suitable for
spectrum sensing where the unknown alternate distribution
can be anything which satisfies a constraint on the Kullback-
Leibler divergence ([4]) with the noise distribution.

Universal hypothesis fixed sample size tests are considered
in [16] from error exponents point of view and in [22]
using mismatched divergence. The initial work on statistical
inference with the help of universal codes, started in [18],
[25], which study classification of finite alphabet sources using
universal coding in fixed sample size setup. [9] considers the
universal hypothesis testing problem in the sequential frame-
work using universal source coding. It derives asymptotically
optimal one sided sequential hypothesis tests and sequential
change detection algorithms for finite and countable alpha-
bets. In practical applications two sided sequential tests are
desirable and often the distributions under the two hypothesis
have continuous alphabet. [19] considers both discrete and
continuous alphabet for a fixed sample size. For continuous
alphabet this paper considers partitions of the real alphabet
and proves that with a bound on Type I error, Type II error
tends to zero as the sample size goes to infinity.

In this paper we consider sequential universal source cod-
ing framework for binary hypothesis with continuous alpha-
bets. This framework captures SNR uncertainty and fading
scenarios. Our algorithms also find applications in intruder
detection in sensor networks. Our previous work on sequential
hypothesis tests using universal codes ([10]) studied tests using
Lempel-Ziv (LZ) ([26]) codes and compared it with the com-
posite hypothesis tests. Cooperative setup is also considered
there. In this work, we provide some theoretical results of
sequential tests using universal codes and propose another
universal test using Krichevsky-Tofimov (KT) estimator with
Arithmetic Encoder ([5]). We compare both of these tests for
different scenarios and find the new work outperforms previous
one.

We also extend our algorithm to cooperative spectrum sens-
ing setup in which different CRs interact with each other to
provide spectrum sensing, mitigating the effects of multipath



fading, shadowing and hidden node problem in single node
spectrum sensing methods. It also improves probability of
false alarm and probability of miss-detection by making use
of spatial diversity. Previous work in cooperative framework
([1]) does not consider the universal setup, to the best of our
knowledge.

In our distributed cooperative spectrum sensing algorithm
each CR sends a summary static or a local decision to the
fusion center instead of full observations. This saves the
communication cost in the CR network considerably.

This paper is organized as follows. Section II describes the
model. Section III provides our algorithm for a single node.
This section starts with a general description of the universal
test. Later we provide tests based on Lempel-Ziv codes and
Krichovsky-Trofimov estimator with Arithmetic Encoder. In
Section IV we compare the two algorithms via simulations.
Section V focusses on decentralized setup. Section VI con-
cludes the paper.

II. MODEL FOR SINGLE CR

We consider the following hypothesis testing problem:
Given i.i.d. observations X1, X2, . . . , we want to know
whether these observations came from the distribution P0 (hy-
pothesis H0) or from another distribution P1 (hypothesis H1).
When the observations come from a source with continuous
alphabet, we assume P0 and P1 have densities f0 and f1 with
respect to some probability measure. We will assume that P0

is known but P1 is unknown. Of course if f1 belongs to an
exponential family with an unknown parameter θ then we can
use asymptotically optimal tests mentioned in [15].

We first discuss the problem for a single CR and then
generalize to cooperative setting. We will be mainly concerned
with continuous alphabet observations because receiver almost
always has Gaussian noise.

Our problem is motivated from the Cognitive Radio sce-
nario. In a CR setup, a CR user checks to see if a frequency
band is being used by a primary (hypothesis H1) or not
(hypothesis H0). Under H0 the CR receiver only senses noise.
Usually noise is Gaussian with mean zero and its variance
can often be estimated. However, under H1 the primary is
transmitting. The transmit power, its modulation and channel
gain may be time varying and not known to the CR node.
Thus P1 (f1) will usually not be completely known to the CR
node.

III. UNIVERSAL SEQUENTIAL HYPOTHESIS TESTING
USING UNIVERSAL SOURCE CODES

We first consider discrete alphabet for the distributions P0

and P1. This test is motivated from the universal one sided
sequential test for discrete alphabet in [9]. In one sided tests
one assumes H0 as the default hypothesis and has to wait a
long time to confirm whether it is the true hypothesis (H0

is the true hypothesis only when the test never stops) and in
spectrum sensing this is not desirable because it is important
to make a quick decision. Hence we switch our attention to
two sided tests which have a finite decision time under both
H0 and H1.

A sequential test is usually defined by a stopping time N
and a decision rule δ. For SPRT ([20]),

N
∆
= inf{n : Wn /∈ (log β,− logα)}, 0 < α, β < 1, (1)

where,

Wn =

n∑
k=1

log
P1(Xk)

P0(Xk)
. (2)

At time N , the decision rule δ decides H1 if WN ≥ − logα
and H0 if WN ≤ log β, where α and β are defined to
satisfy targeted Probability of False Alarm, PFA = P0[WN ≥
− logα] and Probability of Miss-detection, PMD = P1[WN ≤
log β].

SPRT requires full knowledge of P1. Now we propose our
test when P1 is unknown by replacing the log likelihood ratio
process Wn in (2) by Ŵn, where

Ŵn = −Ln(Xn
1 )− logP0(Xn

1 )− nλ
2
, λ > 0, (3)

Ln(Xn
1 ) is the codelength function of a universal lossless

source code for the data Xn
1 and λ is an appropriately chosen

constant (see discussion below).
The following discussion provides motivation for our test.

1) The test follows from the pointwise universality of the
universal lossless codes:

1

n
(Ln(Xn

1 ) + logP (Xn
1 ))→ 0 w.p.1. (4)

This can be argued in the following way. By Shannon-
Macmillan Theorem ([4]) for any stationary ergodic
source limn→∞ n−1 logP (Xn

1 ) = −H̄(X) a.s. where
H̄(X) is the entropy rate. We consider universal
lossless codes whose codelength function satisfies
limn→∞ n−1Ln = H̄(X) a.s., at least for i.i.d sources.
Algorithms like LZ78 ([26]) satisfy this convergence
even for stationary ergodic sources. From the above two
expressions (4) follows.

2) Under hypothesis H1, E1[(− logP0(Xn
1 ))] is approxi-

mately nH1(X) + nD(P1||P0) and for large n, L(Xn
1 )

is approximately nH1(X) where Ei denotes expectation
when Hi is the true hypothesis, i = {0, 1}, H1(X) is
the entropy under H1 and D(P1||P0) is the Kullback-
Leibler divergence between distributions P1 and P0. This
gives the average drift under H1 as D(P1||P0)−λ/2 and
under H0 as −λ/2. To get some performance guarantees
(average drift under H1 greater than λ/2), we limit P1

to a class of distributions,

C = {P1 : D(P1||P0) ≥ λ}. (5)

3) When considering universal hypothesis testing in
Neyman-Pearson framework (fixed sample size) the ex-
isting work considers error exponents ([16]),

max
δ

lim inf
n→∞

− logPMD,

such that lim inf
n→∞

− logPFA ≥ α̂.

But in sequential detection framework the aim is to

min
(N,δ)

E1[N ], min
(N,δ)

E0[N ],



such that PFA ≤ α and PMD ≤ β.
In case of the universal sequential detection framework,
the objective can be to obtain a test satisfying PFA ≤
α and PMD ≤ β with

E1[N ]→ ES1 [N ] =
| logα|

D(P1||P0)
, (6)

E0[N ]→ ES0 [N ] =
| log β|

D(P0||P1)
, (7)

as α+ β → 0,

where ESi (N) is the expected value of N under Hi for
SPRT, when i = 0, 1.

Thus, our test is to use Ŵn in (1) when P0 is known and
P1 can be any distribution in class C defined in (5). Our test
is useful for non i.i.d sources also as most of the properties
given above are valid for stationary and ergodic sources for
certain universal lossless codes. Note that our test is more
generally applicable than ”robust” sequential tests available
which are usually insensitive only against small deviations
from the assumed statistical model ([7]).

Proposition. For our test the following properties holds. Let
G1
n = Wn − nλ/2 and G0

n = −nλ/2. If n−1|Ŵn − Gin| → 0
in probability under hypothesis Hi and {Xn} are i.i.d. then,
(a) P0(N <∞) = 1.
(b) P1(N <∞) = 1.
(c) PFA

∆
= P0(ŴN ≥ − logα) ≤ α.

Proof: Let N1 = inf{n : Ŵn > − logα} and N0 =

inf{n : Ŵn < log β}. Then N = min(N0, N1). For i = 0, 1
and any δ > 0 and εi,

Pi

[
|Ŵn

n
− εi| > δ

]
≤ Pi

[
|Ŵn

n
− G

i
n

n
| > δ

2

]
+Pi

[
|G

i
n

n
− εi| >

δ

2

]
.

(8)
(a) Since P0(N <∞) ≥ P0(N0 <∞), it is sufficient to prove
P0(N0 <∞) = 1. Consider (8). Let ε0 = −λ/2. As n→∞
the first term in the R.H.S. of (8) goes to zero because of the
assumption and obviously the second term also goes to zero.
Thus, Ŵn/n→ ε0 in probability. Therefore,

lim
n→∞

P0[N0 ≤ n] ≥ lim
n→∞

P0[Ŵn < log β]

= lim
n→∞

P0[
Ŵn

n
<

log β

n
] = 1.

We have,

P0[N0 <∞] = lim
n→∞

n∑
k=1

P0[N0 = k] = lim
n→∞

P0[N ≤ n]. (9)

This implies P0[N0 <∞] = 1.
(b) Since P1(N < ∞) ≥ P1(N1 < ∞), it is sufficient to
prove P1(N1 <∞) = 1. Here ε1 = limn→∞ n−1G1

n > 0 a.s.
. When n→∞ the first term in the R.H.S. of (8) approaches
zero because of the assumption and the second term also goes
to zero by strong law of large numbers. Thus,

lim
n→∞

P1[N1 ≤ n] ≥ lim
n→∞

P1[Ŵn > − logα]

= lim
n→∞

P1[
Ŵn

n
>
− logα

n
] = 1.

This gives P1[N1 <∞] = 1 as in (9).
(c) We have,

PFA = P0(N1 < N0) ≤ P0(N1 <∞),
(a)
=

α

2λ/2 − 1
≤ α, (10)

where (a) is given by the [9, Lemma 2].

The assumption n−1|Ŵn−Gin| → 0 in probability has been
shown to be true for i.i.d. sequences for the two universal
source codes LZ78 ([12]) and KT-estimator with Arithmetic
encoder ([24] with the redundancy property of Arithmetic
Encoder [4]) considered later in this section. However, another
desirable property PMD

∆
= P1[ŴN ≤ log β] ≤ β seems to

require extra conditions. Indeed we have seen via simulations
that it holds for KT-estimator with the Arithmetic Encoder but
not for LZ78. Also we have observed from our simulations
that (6) and (7) hold for both the encoders with appropriate
modification in the denominator of R.H.S. as D(P1||P0)−λ/2
and λ/2 respectively (this corresponds to the absolute value
of the expected drift under H1 and H0). These results are not
reported due to lack of space.

Design parameter α is chosen so as to meet a PFA require-
ment for both the aforementioned universal source codes and
β as PMD to be achieved for KT-estimator with Arithmetic
Encoder. By (5), λ can be chosen as the minimum Kullback-
Leibler divergence, which is related to the minimum SNR
under consideration.

A. Continuous Alphabet
The above test can be extended to continuous alphabet

sources. Now, in (2) Pi is replaced by fi, i = 0, 1. Since
we do not know f1, we would need an estimate of Zn

∆
=∑n

k=1 log f1(Xk). If E[log f1(X1)] < ∞, then by strong
law of large numbers, it is a.s. close to Zn/n for all large
n. Thus, if we have an estimate of E[log f1(X1)] we will
be able to replace Zn as in (2). In the following we get a
universal estimate of E[log f1(X1)]

∆
= −h(X1), where h is the

differential entropy of X1, via the universal data compression
algorithms.

First we quantize Xi via a uniform quantizer with a quan-
tization step ∆ > 0. Let the quantized observations be X∆

i

and the quantized vector from X∆
1 to X∆

n be X∆
1:n. We know

that H(X∆
1 ) + log ∆ → h(X1) as ∆ → 0 ([4]). Given i.i.d.

observations X∆
1 , X

∆
2 , . . . , X

∆
n , its code length for a good

universal lossless coding algorithm approximates nH(X∆
1 ) as

n increases. This idea gives rise to the following modification
to (3),

W̃n = −Ln(X∆
1:n)− n log ∆−

n∑
k=1

log f0(Xk)− nλ
2

(11)

and as for the finite alphabet case, to get some performance
guarantee, we restrict f1 to a class of densities,

C = {f1 : D(f1||f0) ≥ λ}. (12)

The following comments justify the above quantization.
1) It is known that uniform scalar quantization with variable-

length coding of n successive quantizer outputs achieves



the optimal operational distortion rate function for quan-
tization at high rates and even for low rates ([6]). This
further justifies the development of our algorithm.

2) An adaptive uniform quantizer, which is changing at
each time step, makes the scalar quantized observations
dependent (learning from the available data at that time)
and non-identically distributed. This makes the universal
codelength function unable to learn the underlying distri-
bution.

3) Non-uniform partitions with width ∆j at jth bin and with
probability mass pj require knowledge of pj which is
unknown under H1.

4) Assuming we have i.i.d observations, uniform quantiza-
tion has another advantage. (11) can be written as

−Ln(X∆
1:n)−

n∑
k=1

log(f0(Xk)∆)− nλ
2
.

Under the high rate assumption, f0(Xi)∆ ≈ p0(X∆
i )

(p0 is the probability mass function after quantizing f0).
Thus, W̃n = −Ln(X∆

1:n) −
∑n
j=1 log p0(X∆

j ) − nλ/2.
This test entirely depends upon the quantized observa-
tions which is not possible for non-uniform quantization.

5) The range of the quantization can be fixed by considering
only those f1’s whose tail probabilities are less than a
small specific value at a fixed boundary and use these
boundaries as range.

We could possibly approximate differential entropy h(X1)
by universal lossy coding algorithms ([3], [8]). But these
algorithms require a large number of samples (more than 1000)
to provide a reasonable approximation. In our application we
are interested in minimising the expected number of samples
in a sequential setup. Thus, we found the algorithms in [3]
and [8] inappropriate for our applications.

B. LZSLRT (Lempel-Ziv Sequential Likelihood Ratio Test)
In the following we use Lempel-Ziv incremental parsing

technique LZ78 ([26]), which is a well known efficient al-
gorithm, for universal source coding in (3). This algorithm
parses the input string into phrases, where each phrase is the
shortest phrase not seen earlier and code each phrase by giving
the location of the prefix of the phrase and the value of the
latest symbol. We call this algorithm LZSLRT. [10] contains
extensive simulation results of this algorithm for different
distributions. Comparisons with a nearly optimal sequential
GLR test ([15]) and extension to decentralized case are also
considered in the same paper. It has been observed that the test
is better than the GLR test for some classes of distributions.

At low n, which is of interest in sequential detection, the
approximation for the log likelihood function via LZSLRT
is usually poor as universal coding requires a few samples
to learn the source. Hence we add a correction term nεn, in
the likelihood sum in (11), where εn is the redundancy for
universal lossless codelength function. It is shown in [11], that

Ln(X∆
1:n) ≤ nH̃n(X∆

1 ) + nεn, (13)

where

εn = C

(
1

log n
+

log log n

n
+

log log n

log n

)
. (14)

Here C is a constant which depends on the size of the
quantized alphabet and H̃n(X∆

1 ) is the empirical entropy,
which is the entropy calculated using the empirical distribution
of samples upto time n.

C. KTSLRT (Krichevsky-Trofimov Sequential Likelihood Ratio
Test)

In this section we propose KTSLRT for i.i.d. sources. The
codelength function in KTSLRT comes from the combined use
of KT (Krichevsky-Trofimov) estimator ([13]) and the Arith-
metic Encoder ([4]). We will show that the test obtained via
this universal code often substantially outperforms LZSLRT.

KT-estimator for a finite alphabet source is defined as,

Pc(x
n
1 ) =

n∏
t=1

v(xt/x
t−1
1 ) + 1

2

t− 1 + |A|
2 ,

(15)

where v(i/xt−1
1 ) denotes the number of occurrences of symbol

i in xt−1
1 and |A| is the alphabet size. It is known ([4]) that

the coding redundancy of the Arithmetic Encoder is smaller
than 2 bits, i.e., if Pc(xn1 ) is the coding distribution used in
the Arithmetic Encoder then Ln(xn1 ) < − logPc(x

n
1 ) + 2.

It is proved in [5] that universal codes defined by the KT-
estimator with the Arithmetic Encoder are nearly optimal in
the sense that the worst case maximum redundancy of this
code achieves the lower bound. Writing (15) in a sequentially
updating fashion, (11) can be modified as

W̃KT
n = W̃KT

n−1 + log

(
v(X∆

n /X
∆n−1
1 ) + 1

2
+ S

t− 1 + |A|
2

)
− log p0(X

∆
n ),

(16)
where S is a scalar constant whose value greatly changes the
performance. The default value of S is zero.

IV. PERFORMANCE COMPARISON

We now provide the performance of KTSLRT via sim-
ulations and compare with LZSLRT. We also compare it
with some other estimators available in literature. It has
been observed from our initial experiments that due to the
difference in the expected drift of likelihood ratio process
under H1 and H0, some algorithms perform better under
one hypothesis and worse under the other hypothesis. Hence
instead of plotting EH1

[N ] versus PMD and EH0
[N ] versus

PFA separately, we plot EDD (0.5EH1
[N ] + 0.5EH0

[N ])
versus PE (0.5PFA + 0.5PMD). We use an eight bit uniform
quantizer.

Figure 1 shows the Gaussian case when f1 ∼ N (0, 5)
and f0 ∼ N (0, 1), where N (a, b) denotes the Gaussian
distribution with mean a and variance b. We observe that
LZSLRT and KTSLRT with S = 0 (the default case) are not
able to give PE less than 0.3 and 0.23 respectively, although
KTSLRT with S = 1 provides much better performance. We
have found in our simulations that S = 0 case performs much
worse than S = 1 and hence in the following we consider
KTSLRT with S = 1 only. Next we provide comparison for
two heavy tail distributions.

Figure 2 displays the Lognormal distribution comparison
when f1 ∼ lnN (3, 3), f0 ∼ lnN (0, 3) and lnN (a, b) indi-
cates the density function of Lognormal distribution with the
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Fig. 1. Comparison between KTSLRT and LZSLRT for Gaussian Distribution

underlying Gaussian distribution N (a, b). It can be observed
that PE less than 0.1 is not achievable by LZSLRT. KTSLRT
with S = 1 provides a good performance.
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Fig. 2. Comparison between KTSLRT and LZSLRT for Lognormal Distri-
bution

Figure 3 shows the results for Pareto distribution. Here
f1 ∼ P(3, 2), f0 ∼ P(10, 2) and support set (2, 10), where
P(K,αm) is the Pareto density function with K and αm as
the shape and scale parameter of the distribution. We observe
that KTSLRT with S = 1 and LZSLRT have comparable
performance.
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Fig. 3. Comparison between KTSLRT and LZSLRT for Pareto Distribution

It is observed by us that as S increases, till a particular
value the performance of KTSLRT improves and afterwards
it starts to deteriorate. For all the examples we considered,
S = 1 provides good performance.

In Figure 4 we compare KTSLRT with the sequential tests
defined by replacing

∑n
k=1 log f1(Xk) by −nĥn where ĥn is

an estimate of the differential entropy and with a test defined
by replacing f1 by a density estimator f̂n.

It is shown in [23] that 1NN (1st Nearest Neighbourhood)
differential entropy estimator performs better than other dif-
ferential entropy estimators where 1-NN differential entropy

estimator is

ĥn =
1

n

n∑
i=1

log ρ(i) + log(n− 1) + γ + 1,

where ρ(i)
∆
= minj:1≤j≤n,j 6=i ||Xi −Xj || and γ is the Euler-

Mascheroni constant (=0.5772...).
There are many density estimators available ([21]). We

use the Gaussian example in Figure 1 for comparison. For
Gaussian distributions, a Kernel density estimator is a good
choice as optimal expressions are available for the parameters
in the Kernel density estimators ([21]). The Kernel density
estimator at a point z is

f̂n(z) =
1

wn

n∑
i=1

K

(
z −Xi

wn

)
,

where K is the kernel and wn is the bandwidth. See [21] for
optimal K and wn. We provide the comparison of KTSLRT
with these two schemes in Figure 4. We find that KTSLRT
with S = 1 performs the best.
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Fig. 4. Comparison among KTSLRT, universal sequential tests using 1NN
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V. DECENTRALIZED DETECTION

Motivated by the satisfactory performance of a single node
case, we extend LZSLRT to the decentralized setup in [10]. In
this setup we consider a CR network with one fusion center
(FC) and L CRs. The CRs use local observations to make
local decisions about the presence of a primary and transmit
them to the FC. The FC makes the final decision on the local
decisions it received.

Let Xk,l be the observation make at CR l at time k.
We assume {Xk,l, k ≥ 1} are independent and identically
distributed (i.i.d.) and that the observations are independent
across CRs. We will denote by f1,l and f0,l the densities
of Xk,l under H1 and H0 respectively. Using the detection
algorithm based on {Xn,l, n ≤ k} the local node l transmits
Yk,l to the fusion node at time k. We assume a multiple-
access channel (MAC) between CRs and FC in which the FC
receives Yk, a coherent superposition of the CR transmissions:
Yk =

∑L
l=1 Yk,l+Zk, where {Zk} is i.i.d. zero mean Gaussian

receiver noise with variance σ2 (For our algorithms Gaussian
assumption is not required). FC observes Yk, runs a decision
rule and decides upon the hypothesis.

Now our assumptions are that at local nodes, f0,l is known
but f1,l is not known. Thus we use LZSLRT at each local node
and Wald’s SPRT at the fusion center (we call it LZSLRT-
SPRT). Similarly we can use KTSLRT at each CR and SPRT



at the fusion center and call it KTSLRT-SPRT. In both the
cases whenever the CR stopping time is reached, it transmits
b1 if its decision is H1, otherwise b0. At the FC we have
SPRT for the binary hypothesis testing of two densities g1

(density of Zk + µ1) and g0 (density of Zk − µ0), where µ0

and µ1 are design parameters. At the FC, the Log Likelihood
Ratio Process (LLR) crosses upper threshold under H1 when a
sufficient number of local nodes (denoted by I , to be specified
appropriately) transmit b1. Thus µ1 = b1I and similarly µ0 =
b0I .

In the following we compare the performance of LZSLRT-
SPRT, KTSLRT-SPRT and DualSPRT developed in [10] which
runs SPRT at CRs and FC and hence requires knowledge
of f1,l at CR l. DualSPRT is known to be asymptotically
optimal. We choose b1 = 1, b0 = −1, I = 2, L = 5 and
Zk ∼ N (0, 1) and assume same SNR for all the CRs to reduce
the complexity of simulations. We use eight bit quantizer in
all these experiments. Figure 5 is the Gaussian example. The
simulation setup has f0,l ∼ N (0, 1) and f1,l ∼ N (0, 5), for
1 ≤ l ≤ L. The setup for Figure 6 is f0,l ∼ P(10, 2) and
f0,l ∼ P(3, 2), for 1 ≤ l ≤ L. FC thresholds are chosen
appropriately with the available expressions for SPRT.
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Fig. 5. Comparison among DualSPRT, KTSLRT-SPRT and LZSLRT-SPRT
for Gaussian Distribution
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Fig. 6. Comparison among DualSPRT, KTSLRT-SPRT and LZSLRT-SPRT
for Pareto Distribution

VI. CONCLUSIONS

In this paper we have presented a novel algorithm for
spectrum sensing. We start with a universal sequential testing
spectrum sensing framework where the CRs do not have any
knowledge about the distribution (not even parametric family)
when the primary transmits. This setup covers uncertainty
in the SNR at CR receivers and fading channels between
primary and CR. We propose a simple test using universal
lossless codes. Our algorithm can be used for continuous and
discrete distributions. We have compared our algorithms when
the lossless codes are Lempel-Ziv codes and KT-estimator

with Arithmetic Encoder. Finally we have extended these
algorithms to distributed cooperative setup.
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