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Abstract—This paper considers sequential hypothesis testing
in a decentralized framework. We start with two simple decen-
tralized sequential hypothesis testing algorithms. One of which is
later proved to be asymptotically Bayes optimal. We also consider
composite versions of decentralized sequential hypothesis testing.
A novel nonparametric version for decentralized sequential
hypothesis testing using universal source coding theory is devel-
oped. Finally we design a simple decentralized multihypothesis
sequential detection algorithm.
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I. INTRODUCTION

Distributed detection has been quite popular recently due
to its relevance to distributed radar, sensor networks [3],
distributed databases and cooperative spectrum sensing in
Cognitive radios ([11], [22]).

Distributed detection can be either decentralized or central-
ized. In the centralized framework, the information received
by the sensors are transmitted directly, without doing any
processing, to the fusion center. In decentralized detection each
sensor sends a summarized or quantized information, which
can be a local decision also, to the fusion center. Fusion center
ultimately decides upon which hypothesis is true. The later
one is more efficient in practical applications as we usually
have bandwidth and power constraints at each local node
[23]. A drawback of a decentralized scheme is that the fusion
center’s decision is based on less information. Hence the main
challenge of decentralized detection algorithms is to provide
a reliable decision with this information. Detection in sensor
networks, in particular, is usually based on local node and
fusion node detection policies and the type of feedback from
the fusion node to the sensors. The main resource constraints
for decentralized detection schemes include number of nodes,
finite alphabet constraint on output of each sensor, limited
spectral bandwidth, total cost of the system and stringent
power requirements.

Static or dynamic stopping time is an issue of interest in
distributed detection. Static stopping is based on fixed sample
size (FSS) detection. In such scenarios, the likelihood ratio
test on the received data will minimise the probability of error
at the fusion center for a binary hypothesis testing problem.
Hence the real problem in a FSS case is to decide the type
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of information each sensor should send to the fusion center.
Interestingly likelihood tests at the sensor nodes are opti-
mal whenever the observations are conditionally independent,
given the hypothesis.

Dynamic or sequential case focusses on decentralized
schemes where information comes sequentially to the sensors.
Sequential detectors can detect change or test hypothesis. It is
well known that in case of a single node, Wald’s Sequential
Probability Ratio Test (SPRT) outperforms other sequential
or fixed sample size detectors [7]. In sequential decentralized
framework, optimisation needs to be performed jointly over
sensors and fusion center policies as well as over time.
Decentralized sequential change detection has been discussed
extensively in ([1], [20]). In this paper we focus on decentral-
ized sequential hypothesis testing. Unfortunately, this problem
is intractable for most of the sensor configurations ([15], [21]).
Specifically there is no optimal solution available for sensor
configurations with no feedback from fusion center and limited
local memory, which is more relevant in practical situations.
Recentaly [15] and [6] proposed asymptotically optimal (order
1 and order 2 respectively) decentralized sequential hypothesis
tests for such systems with full local memory. But these
models do not consider noise at the fusion center and assume
a perfect communication channel between the sensor nodes
and the fusion center.

We propose a decentralized sequential hypothesis testing
algorithm where SPRT is used at both the secondary nodes
and the fusion center. This algorithm is called DualSPRT.
We prove DualSPRT is asymptotically Bayes. Although Dual-
SPRT performs asymptotically, it is not optimal to use SPRT
at the fusion center. Thus we improve over DualSPRT with a
modification at the fusion center motivated by CUSUM [11].
Furthermore we introduce a new way of quantizing SPRT
decisions of local nodes. We call this algorithm SPRT-CSPRT.

Composite sequential hypothesis testing where there is an
uncertainty in some parameters of the assumed distribution
is surveyed in ([7], [14]). A unified asymptotically optimal
solution, applicable to both cases of with and without indif-
ference zone separating one-sided hypothesis, is provided for
exponential family in [13]. We use it at the local nodes and
SPRT or CSPRT (fusion center policy of SPRT-CSPRT) at the
fusion center. We show that this modification (GLR-SPRT or
GLR-CSPRT) works well.



Nonparametric sequential problems for location testing are
well documented in [7]. But we focus on universal hypothesis
testing, where the distribution under null hypothesis is known,
but not under the alternate hypothesis. [25] studies classifi-
cation of finite alphabet sources using universal coding. [9]
considers universal hypothesis testing problem in sequential
framework using universal source coding. It derives asymp-
totically optimal one sided sequential hypothesis tests and
sequential change detection algorithms for finite and countable
alphabets. But in practical applications often the distributions
under the two hypothesis have continuous alphabet (e.g.,
Gaussian noise is ubiquitous). [16] considers both discrete and
continuous alphabet for a fixed sample size. For continuous
alphabet this paper considers partitions of the real alphabet
and proves that with a bound on Type I error, Type II error
tends to zero as the sample size goes to infinity. But the author
did not consider how to partition the alphabet and proved
the result on the assumption of existence of partitions. In
this paper we use universal source coding on the problem
of distributed sequential hypothesis testing when the alphabet
is continuous. For this we use uniform scalar quantizer with
universal source coding algorithms (e.g., Lempel Ziv [26])
at the local nodes to approximate the likelihood ratio under
alternate (unknown) hypothesis. We show that this universal
test works quite favourably compared to other tests.

In summary, this paper makes the following contributions in
decentralized hypothesis testing problem. First it summarises
our recent asymptotically optimal tests when there is noise at
the fusion center. Next it develops new universal distributed
algorithms using universal source coding. Finally it develops
a simple distributed sequential multihypothesis test from ex-
isting algorithms to provide an improved practical algorithm.

This paper is organised as follows. Section II describes the
problem. Section III considers parametric decentralized se-
quential hypothesis testing algorithms. This section starts with
the DualSPRT algorithm. Then we provide SPRT-CSPRT. We
compare their performance with some asymptotically optimal
tests. Later we prove the asymptotic optimality of DualSPRT.
Next we consider parametric uncertainty. In Section IV we
introduce nonparametric decentralized sequential hypothesis
testing algorithms using universal source coding. Section V
focusses on multihypothesis case. Section VI concludes the
paper.

II. MODEL

Consider a sensor network with one fusion center and L
sensors (nodes). The L sensors sense the environment to detect
the hypothesis if a signal is present or not. The local decisions
made by the sensors are transmitted to a fusion node via
a multiple access channel for it to make the final decision.
There is no feedback from the fusion center. We allow the
possibility that the local nodes may do some processing on
the data and transmit to the fusion node without necessarily
make a decision.

Let Xk,l be the observation made at sensor l at time
k. We assume that {Xk,l, k ≥ 1} are independent and

identically distributed (i.i.d.) and that the observations are in-
dependent across sensors. Using the detection algorithm based
on {Xn,l, n ≤ k} the sensor l transmits Yk,l to the fusion node
at time k. We assume that the sensors are synchronised so that
the fusion node receives Yk =

∑L
l=1 Yk,l + Zk, where {Zk}

is i.i.d. zero mean Gaussian receiver noise with variance σ2

(for our algorithms Gaussian assumption is not required). The
fusion center observes {Yk} and decides upon the hypothesis.

The observations {Xk,l} depend on whether the true hy-
pothesis is hypothesis H1 or hypothesis H0:

Xk,l =

{
Zk,l, k = 1, 2, . . . , under H0,

hlSk + Zk,l, k = 1, 2, . . . , under H1,
(1)

where hl is the channel gain of the lth sensor, Sk is the signal
and Zk,l is the noise at the lth sensor at time k. We assume
{Zk,l, k ≥ 1} are i.i.d. We will denote by f1,l and f0,l the
densities of Xk,l under H1 and H0 respectively. The fusion
center makes a decision at a random time N . We assume that
N is much less than the coherence time of the channel so
that the slow fading assumption is valid. This means that hl
is random but remains constant during the sensing duration.

The general problem is to develop a distributed algorithm
in the above setup which solves the problem:

minEDD
4
= E[N |Hi] , (2)

subject to PFA ≤ α and PMD ≤ β

where Hi is the true hypothesis, i = 0, 1 and PFA and
PMD are the probability of false alarm and the probability
of miss detection respectively, i.e., probability of making a
wrong decision under H0 and under H1.

It is well known that for a single node case (L = 1) Wald’s
SPRT performs optimally for i.i.d. observations in terms of
reducing E[N |H1] and E[N |H0] for a given PFA and PMD. If
there is no communication cost or energy cost in transmitting
data from the local nodes to the fusion node, then again we
can reliably send data sensed by the local nodes to the fusion
node and run SPRT at the fusion center. Otherwise, the optimal
algorithm is not known. Asymptotically optimal algorithms for
i.i.d. observations are recently proposed. But they do not take
into account the fusion center noise and the uncertainties in the
parameters of the distributions under H0 and H1. Motivated
by the good performance of DualCUSUM (a decentralized
sequential change detection algorithm which runs CUSUM
at the local nodes and at the fusion center) in [1] and the
optimality of SPRT for a single node, we propose DualSPRT
(a decentralized sequential hypothesis testing algorithm which
runs SPRT at local nodes and at the fusion center). Later on
we will present an algorithm when there is uncertainties in the
distribution.

III. PARAMETRIC DECENTRALIZED SEQUENTIAL
HYPOTHESIS TESTING ALGORITHMS

We first present DualSPRT [10].



A. DualSPRT Algorithm

1) Secondary node, l, runs SPRT,

W0,l = 0

Wk,l = Wk−1,l + log

[
f1,l (Xk,l)

f0,l (Xk,l

]
, k ≥ 1. (3)

2) Secondary node l transmits a constant b1 at time k if
Wk,l ≥ γ1,l or transmits b0 when Wk,l ≤ γ0,l, i.e.,

Yk,l = b11{Wk,l≥γ1,l} + b01{Wk,l≤γ0,l}

where γ0,l < 0 < γ1,l and 1A denotes the indicator
function of set A. Parameters b1, b0, γ1, γ0 are chosen
appropriately.

3) Finally, fusion center runs SPRT:

Fk = Fk−1 + log [g1 (Yk) /g0 (Yk )] , F0 = 0, (4)

where g0 is the density of Zk +µ0 and g1 is the density
of Zk+µ1, µ0 and µ1 being design parameters such that
Fk has a positive drift when atleast L/2 nodes transmit
b1 and negative drift if atleast L/2 nodes transmit b0.

4) The fusion center decides about the hypothesis at time
N where

N = inf{k : Fk ≥ β1 or Fk ≤ β0}

and β0 < 0 < β1. The decision at time N is H1 if
FN ≥ β1; otherwise H0.

Physical layer fusion reduces transmission time, but requires
synchronisation of different local nodes. If synchronisation is
not possible, then some other algorithm, e.g., TDMA can be
used. This algorithm in the context of spectrum sensing in
Cognitive Radio has been studied in our previous work [10].
Performance analysis and parameter uncertainty (unknown
SNR and fading) in distributions at the local nodes were
handled in the same paper.

B. SPRT-CSPRT Algorithm

In DualSPRT given above, observations to the fusion center
are not always identically distributed. Till the first transmission
from secondary nodes, these observations are i.i.d. ∼ N (0, σ2)
where N (a, b) is the Gaussian pdf with mean a and variance
b. But after the transmission from the first local node and
till the transmission from the second node, they are i.i.d.
Gaussian with another mean and but same variance σ2. Thus
the observations at the fusion center are no longer i.i.d. Since
the optimality of SPRT is known for i.i.d. observations ([7]),
DualSPRT is not optimal.

The following heuristic arguments provide the motivation
of the proposed modifications to DualSPRT. If the SPRT sum
defined in (4) goes below zero it delays in crossing the positive
threshold β1. Hence if we keep SPRT sum at zero whenever
it goes below zero, it reduces EDD. This happens in CUSUM
[7]. Similarly one can use a CUSUM type algorithm under H0.
These arguments were verified via simulations and theory in
[11]. Thus we obtain the following algorithm :

Steps (1)-(2) are same as in DualSPRT. The steps (3) and
(4) are replaced by

3) Fusion center runs two algorithms:

F 1
k = (F 1

k−1 + log [g1 (Yk) /g0 (Yk )])+ (5)

F 0
k = (F 0

k−1 + log [g1 (Yk) /g0 (Yk )])−, (6)

F 1
0 = 0, F 0

0 = 0, where (x)+ = max(0, x) and (x)− =
min(0, x).

4) The fusion center decides about the hypothesis at time
N where

N = inf{k : F 1
k ≥ β1 or F

0
k ≤ β0}

and β0 < 0 < β1. The decision at time N is H1 if
F 1
N ≥ β1; otherwise H0.

Under H1, (5) has a positive drift and hence it approaches the
threshold β1 quickly, but under H0, (5) will most probably be
hovering around zero. Similarly under H0, (6) moves towards
β0, but under H1 will be mostly around zero. This means that
PFA for this algorithm is expected to be less compared to
DualSPRT.

We consider one more improvement. When a local SPRT
sum crosses its threshold, it transmits b1/b0. This node trans-
mits till the fusion center SPRT crosses the threshold. If it
is not a false alarm, then its SPRT sum keeps on increasing
(decreasing). But if it is a false alarm, then the sum will
eventually move towards the other threshold. Hence instead of
transmitting b1/b0 the local node can transmit a higher/lower
value in an intelligent fashion. This should improve the perfor-
mance. Thus we modify the step (2) in DualSPRT as follows.
Secondary node l transmits a constant from {b11, b12, b13, b14} at
time k if Wk,l ≥ γ1 or transmits from {b01, b02, b03, b04} when
Wk,l ≤ γ0, as follows :

Yk,l =



b11 if Wk,l ∈ [γ1, γ1 + ∆1),
b12 if Wk,l ∈ [γ1 + ∆1, γ1 + 2∆1),
b13 if Wk,l ∈ [γ1 + 2∆1, γ1 + 3∆1),
b14 if Wk,l ∈ [γ1 + 3∆1,∞),
b01 if Wk,l ∈ [γ0, γ0 −∆0),
b02 if Wk,l ∈ [γ0 −∆0, γ0 − 2∆0),
b03 if Wk,l ∈ [γ0 − 2∆0, γ0 − 3∆0),
b04 if Wk,l ∈ [γ0 − 3∆0,−∞).

(7)

where ∆1 and ∆0 are the parameters to be tuned. The expected
drift under H1 (H0) is a good choice for ∆1 (∆0).

We call the algorithm with the above two modifications as
SPRT-CSPRT (with ‘C’ as an indication about the motivation
from CUSUM).

The theoretical analysis and extensive numerical experi-
ments for SPRT-CSPRT are provided in [11].

C. Performance Comparison

In this section we compare the performance of DualSPRT,
SPRT-CSPRT and the asymptotically optimal algorithms in
[6] and [15]. The algorithm in [15] has been shown to be
first order optimal and the algorithm in [6] is second order
optimal. The simulation example shows a difference in their



performance at finite parameter values. The scenario in this
example is motivated from Cognitive Radio systems ([10],
[11]).

Throughout the paper we use γ1 = −γ0 = γ, β1 = −β0 =
β and µ1 = −µ0 = µ for simplicity. Parameters used for
simulation are as follows: There are 5 nodes (L = 5). We
take f0,l ∼ N (0, 1), f1,l ∼ N (1, 1) for 1 ≤ l ≤ L and
Zk ∼ N (0, 1). We also take {b11, b12, b13, b14} = {1, 2, 3, 4},
{b01, b02, b03, b04} = {−1,−2,−3,−4} and b1=−b0=1 (for Dual-
SPRT). Parameters γ and β are chosen from a range of values
to achieve a particular PFA. Performance comparisons with
the asymptotically optimal decentralized sequential algorithms
which do not consider fusion center noise (DSPRT [6], Mei’s
SPRT [15]) are given in Figure 1. Note that DualSPRT and
SPRT-CSPRT include fusion center noise. Here We find that
the SPRT-CSPRT’s performance is close to that of DSPRT and
is better than DualSPRT and Mei’s SPRT. Also, SPRT-CSPRT
performs better than DualSPRT. This has happened even when
we did not use fusion node noise with the algorithms [6] and
[15].

We compared these algorithms with other system parameters
and similar conclusions were drawn.
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Fig. 1. Comparison among DualSPRT, SPRT-CSPRT, Mei’s SPRT and
DSPRT under H1

D. Asymptotic optimality of DualSPRT

We have observed above that DualSPRT and SPRT-CSPRT
perform close to or better than asymptotically optimal algo-
rithms available which do not model fusion center noise. Now
we prove asymptotic optimality of DualSPRT with the Bayes
setup following the arguments in [15].

The two hypotheses H0 and H1 are assumed to have known
prior probabilities π and 1 − π respectively. A cost c (≥ 0)
is assigned to each time step taken for decision. Let Wi >
0, i = 0, 1 be the cost of falsely rejecting Hi. Then Bayes risk
of DualSPRT (the stopping time is denoted by N(c) and the
Bayes test is denoted by δ) is

Rc(δ) = π[cE0(N) +W0P0{reject H0}]
+ (1− π)[cE1(N) +W1P1{rejectH1}] (8)

where Ei denotes expectation and Pi denotes probability under
Hi, i = 0, 1. We also use the following notation:

I(f1,l, f0,l) =

∫
log

(
f1,l(x)

f0,l(x)

)
f1,l(x)dx, (9)

is the Kullback-Leibler (K-L) Divergence.

Itot =

L∑
l=1

I(f0,l, f1,l), Jtot =

L∑
l=1

I(f1,l, f0,l),

rl =
I(f0,l, f1,l)

Itot
, ρl =

I(f1,l, f0,l)

Jtot
.

Theorem 1: Assume,
1) {Xk,l, k ≥ 0} is i.i.d. and independent of {Xk,j , k ≥ 0}

for all l 6= j.
2) the following hold∫ (

log

(
f1,l(x)

f0,l(x)

))2

f1,l(x)dx <∞

and ∫ (
log

(
f0,l(x)

f1,l(x)

))2

f0,l(x)dx <∞.

Then DualSPRT with local node thresholds γ0,l =
−rl| log c|, γ1,l = ρl| log c| and fusion center thresholds
β0 = −| log c|, β1 = | log c|, is asymptotically Bayes, i.e.,
limc→0Rc(δ∗)/Rc(δ) = 1, where δ∗ is the Bayes solution
and δ indicates DualSPRT

Proof: See the Appendix.
Remarks 1: As the cost c decreases, essentially we are

allowing more samples for detection, which is captured in the
modified expressions of γ0,l, γ1,l, β0 and β1.

E. Unknown Parameters

In this section we consider the setup when the distributions
f0,l and f1,l belong to a parametric family with some uncer-
tainty in the parameters.

In ([13], [14]) Lai has proposed a one sided sequential
composite hypothesis test, which is asymptotically Bayes
and also nearly optimal from the frequentist view point for
testing one sided composite hypotheses H0 : θ ≤ θ0 versus
H1 : θ ≥ θ1, θ0 < θ1. The distributions under H0 and H1

belong to the exponential family of distributions and θ denotes
a parameter for the family. We propose the following test in
our distributed setup. The local nodes use Lai’s algorithm
while the fusion node runs the SPRT. We have made this
modification for DualSPRT as well as for SPRT-CSPRT. We
call the modified algorithm as GLR-SPRT and GLR-CSPRT
respectively.

The sensor’s hypothesis testing problem, likelihood ratio
sum, stopping criteria and decision criteria are as follows. We
consider

H0 : θ = θ0 ; H1 : θ ≥ θ1 . (10)

where θ0 = 0 and θ1 is appropriately chosen. Then,

Wn,l = max

[
n∑
k=1

log
fθ̂n(Xk)

fθ0(Xk)
,

n∑
k=1

log
fθ̂n(Xk)

fθ1(Xk)

]
, (11)

N = inf {n : Wn,l ≥ g(cn)} , (12)



where g(cn) is a time varying threshold and c is the cost
assigned for each observation. An approximate expression for
g is given in [13]. Also for Gaussian f0 and f1, θ ∈ [a1, a2]
, Sn =

∑n
k=1Xk,l, θ̂n = max{a1,min[Sn/n, a2]}. At time

N decide upon H0 or H1 according as θ̂N ≤ θ∗ or θ̂N ≥ θ∗ ,
where θ∗ is obtained by solving I(θ∗, θ0) = I(θ∗, θ1), and
I(θ, λ) is the Kullback-Leibler information number, which is
the K-L Divergence I(fθ, fλ) in (9). Here, as the threshold
g(cn) is a time varying and decreasing function, the quantisa-
tion (7) is changed in the following way: if θ̂N ≥ θ∗

Yk,l =


b11 if Wk,l ∈ [g(kc), g(kc3∆)),
b12 if Wk,l ∈ [g(kc3∆), g(kc2∆)),
b13 if Wk,l ∈ [g(kc2∆), g(kc∆)),
b14 if Wk,l ∈ [g(kc∆),∞).

(13)

If θ̂N ≤ θ∗ the local node will transmits from {b01, b02, b03, b04}
under the same conditions. Here ∆ is a tuning parameter and
0 ≤ 3∆ ≤ 1. The choice of θ1 in (10) affects the performance
of E[N |H0] and E[N |H1] for the algorithm (11)-(12). As θ1

increases, E[N |H0] decreases and E[N |H1] increases.
We have used this algorithm in energy detector setup ([10],

[11]) to take care of the following scenarios: the received SNR
at the local nodes and/or the channel gains hl are not known.

Numerical results and our observations for GLR-SPRT and
GLR-CSPRT are presented in ([10], [11]) and are shown to
provide good performance.

IV. USING UNIVERSAL SOURCE CODING FOR
NONPARAMETRIC TESTING

In this section we consider a completely nonparametric
setup for f1. For this we use universal data compression
algorithms. There is comparatively little literature available on
using universal data compression algorithms for the detection
problem; especially sequential detection algorithms. Thus we
first discuss the problem for a single node and then generalize
to the decentralized setting. We will be mainly concerned with
continuous alphabet observations because the receiver almost
always has Gaussian noise. Of course, if our observations have
discrete alphabets, the following algorithm will simplify.

A. Single node case
We consider the following hypothesis testing problem:

Given i.i.d. observations X1, X2, . . . , we want to know
whether these observations came from distribution P0 (hy-
pothesis H0) or from distribution P1 (hypothesis H1). Let
P0 and P1 have densities f0 and f1 with respect to some
probability measure. We will assume that f0 is known but f1

is unknown. Of course if f1 belongs to a parametric family
with an unknown parameter θ then we can use Lai’s GLR [13]
which is optimal under some conditions. However, if we use
nonparametric setup for f1 then in the following we propose
to use universal data compression algorithms.

The idea for the new algorithm is as follows. If we know
f1 we use SPRT:

N
∆
= inf{n : Wn =

n∑
k=1

log
f1(Xk)

f0(Xk)
/∈ (−β0, β1)} (14)

and if WN > β1 decide H1; otherwise H0. Since we
do not know f1, we would need an estimate of Zn

∆
=∑n

k=1 log f1(Xk). If E[log f1(X1)] < ∞, then by strong
law of large numbers, it is a.s. close to Zn/n for all large
n. Thus, if we have an estimate of E[log f1(X1)] we will
be able to replace Zn in (14). In the following we get a
universal estimate of E[log f1(X1)]

∆
= −h(X1), where h is the

differential entropy of X1 via the universal data compression
algorithms.

First we quantize X1 via a uniform quantizer with a
quantization step ∆ > 0:

X∆
1 = [X1/∆]∆, where [X] is the integer part of X (15)

We know that H(X∆
1 ) + log ∆ → h(X1) as ∆ → 0 [4].

Given i.i.d. observations X∆
1 , X

∆
2 , . . . , X

∆
n , its code length

for a good universal lossless coding algorithm approximates
nH(X∆

1 ) as n increases. In the following we use Lempel-
Ziv incremental parsing algorithm LZ78 [26], which is a
well known efficient algorithm. But any universal lossless
codelength function satisfying limn→∞ n−1Ln = H(X∆

1 )
a.s. can be used (Ln is the code length of first n quantized
samples). Examples of such algorithms include Context Tree
Weighting algorithm, Kolmogrov complexity and Rissanen
stochastic complexity [24]. Specifically, for Lempel-Ziv algo-
rithm (LZ78) n−1Ln → H(X∆) a.s for any stationary ergodic
source {X∆

1 , X
∆
2 , . . .} with a finite alphabet.

In (14) Wn has an expected drift of I(f1, f0) under H1 and
−I(f0, f1) under H0. However if we replace Zn in (14) by
the approximation −Ln−n log ∆, then the drift of Wn under
H0 becomes zero. In order to make it negative, we add an
extra term in the expression of Wn and define (14) by,

Ŵn = −Ln − n log ∆−
n∑
k=1

log f0(Xk)− nλ
2

(16)

where λ is a positive constant. To get some performance
guarantees, we limit to a class of densities f1:

C = {f1 : I(f1, f0) ≥ λ} (17)

Then under H0, Ŵn has a negative drift of λ/2 and under
H1, in the worst case Ŵn has a positive drift of λ/2. Instead
of λ/2, we can be less conservative and choose a larger
fraction of λ. We call this algorithm as LZSLRT (Lempel-Ziv
Sequential Likelihood Ratio Test).

We compare LZSLRT obtained with SPRT and GLR-Lai
[13] for different f1 and f0 in Table I and Table II for Gaussian
and Pareto distributions respectively. The experimental set up
for Table I is, f0 ∼ N (0, 5) and f1 ∼ N (3, 5). ∆ = 0.3125.
The setup for Table II is, f0 ∼ P(10, 2) and f1 ∼ P(3, 2),
where P(K,Xm) is the Pareto density function with K and
Xm as the shape and scale parameter of the distribution.
∆ = 0.3125. Here PE represents PFA when the actual
hypothesis is H0 and PMD when it is H1. We observe that
although LZSLRT performs worse for Gaussian distribution,
it works better than GLR-Lai for the Pareto Distribution. We



have made comparisons for other distributions also and found
that LZSLRT compares favourably with GLR-Lai.

This motivates us to use LZSLRT for the decentralized setup
in the next section.

We make a few observations on LZSLRT. Although
LZSLRT is universal, we need to fix the parameter ∆ and
upper and lower truncation of support of f1 and f0 to obtain
a finite alphabet. At low n, which is of interest in sequential
detection, the approximation for the likelihood function is
usually bad as universal lossless coding requires a few samples
to learn the source (as is of course needed by any learning
algorithm including the test in [13]). Hence we add nεn in
(16), where εn is the redundancy for the universal lossless
code length function. It can be shown that for Lempel-Ziv
coding [12],

Ln ≤ nH(X∆
1 ) + nεn (18)

where

εn = C

(
1

log n
+

log log n

n
+

log log n

log n

)
(19)

Here C is a constant which depends on the size of quantized
alphabet. The dominating term in the εn is the third term.
Hence we use Ln − C(log log n)(log n)−1 instead of Ln in
(16).

We could possibly approximate differential entropy h(X1)
by universal lossy coding algorithms ([2], [24]). But these
algorithms require a large number of samples (more than 1000)
to provide a reasonable approximation. In our application we
are interested in minimising the expected number of samples
in a sequential setup. Thus, we found the algorithms in ([2],
[24]) inappropriate for our applications. It is known [8] that
uniform scalar quantization with variable-length coding of n
successive quantizer outputs achieves the optimal operational
distortion rate function for quantizer at high rates and even
for low rates. This further justifies the development of our
algorithm although in our setup rate is not critical.

Hyp EDD PE = 0.05 PE = 0.01 PE = 0.005

H1 SPRT 3.18 4.56 6.34
H1 GLR-Lai 4.8 8.59 12.17
H1 LZSLRT 12.3 14.78 18.9
H0 SPRT 3.23 4.62 6.23
H0 GLR-Lai 5.18 8.46 13.49
H0 LZSLRT 13.6 15.6 19.67

TABLE I
COMPARISON AMONG SPRT, GLR-LAI AND USC-SLRT FOR GAUSSIAN

DISTRBUTION

Hyp EDD PE = 0.05 PE = 0.01 PE = 0.005

H1 SPRT 3.45 6.86 14.23
H1 GLR-Lai 10.23 13.78 19.37
H1 LZSLRT 9.6 11.79 19.31
H0 SPRT 3.78 5.9 8.92
H0 GLR-Lai 11.45 14.5 21.56
H0 LZSLRT 10.8 14.23 19.6

TABLE II
COMPARISON AMONG SPRT, GLR-LAI AND LZSLRT FOR PARETO

DISTRBUTION

B. Decentralized case

Motivated by satisfactory performance of a single node
case, we extend LZSLRT to the decentralized setup. Now our
assumptions are that at local nodes, f0,l is known but f1,l is
not known and the fusion node only observes Gaussian data
(this setup is amply justified in sensor network and Cognitive
Radio applications). Thus we use LZSLRT at each local node
and Wald’s SPRT at the fusion center (we call it LZSLRT-
SPRT). An advantage of the decentralized (multiple nodes)
is the reduction in the detection delay compared to a single
node for the same PFA and PMD. This is usually attained by
reducing the local node thresholds, which imparts high PFA
and PMD in the single node case. The increase in the PFA and
PMD in the decentralized case is mitigated at the fusion center.
In our case it has been observed that for lower thresholds,
we have to use all the three terms in (19) to obtain a good
approximation of entropy.

We compare decentralized LZSLRT (LZSLRT-SPRT) with
DualSPRT and GLRSPRT in Tables III and IV. The ex-
perimental set up for Table III is, f0,l ∼ N (0, 5) and
f1,l ∼ N (3, 5), for 1 ≤ l ≤ L, L = 5, Zk ∼ N (0, 1).
∆ = 0.3125. The setup for Table IV is, f0,l ∼ P(10, 2) and
f1,l ∼ P(3, 2), for 1 ≤ l ≤ L, L = 5 where P(K,Xm) is the
Pareto density function with K and Xm as the shape and scale
parameter of the distribution. ∆ = 0.3125. Fusion center noise
has distribution N (0, 1). Here PE represents PFA when the
actual hypothesis is H0 and PMD when it is H1. As for the
single node case, LZSLRT-SPRT performs worse than GLR-
SPRT for the Gaussian case but better than GLR-SPRT for the
Pareto case.

Hyp EDD PE = 0.01 PE = 0.005 PE = 0.001

H1 DualSPRT 2.6 3.93 4.47
H1 GLR-SPRT 4.38 6.4 10.89
H1 LZSLRT-SPRT 9.4 11.53 16.03
H0 DualSPRT 3.1 3.9 4.42
H0 GLR-SPRT 5.9 5.86 11.78
H0 LZSLRT-SPRT 10.44 12.67 16.33

TABLE III
COMPARISON AMONG DUALSPRT, GLR-SPRT AND LZSLRT-SPRT FOR

GAUSSIAN DISTRBUTION

Hyp EDD PE = 0.01 PE = 0.005 PE = 0.001

H1 DualSPRT 2.3 2.64 3.05
H1 GLR-SPRT 9.26 11.8 18.24
H1 LZSLRT-SPRT 8.01 9.37 15.23
H0 DualSPRT 2.89 3.4 4.49
H0 GLR-SPRT 10.79 15.88 20.39
H0 LZSLRT-SPRT 9.38 13.44 16.11

TABLE IV
COMPARISON AMONG DUALSPRT, GLR-SPRT AND LZSLRT-SPRT FOR

PARETO DISTRBUTION

V. DECENTRALIZED MULTIHYPOTHESIS SEQUENTIAL
HYPOTHESIS TESTING

Consider the problem of decentralized sequential multihy-
pothesis testing with M > 2 hypothesis and with no feedback
from the fusion center. Let the hypotheses be Hm : Xk,l ∼
fml , m = 0, . . . ,M − 1 where l is the sensor index and k is
the time index,



There has been some work on a single node multihypoth-
esis sequential testing problem both in the Bayesian [5] as
well as non-Bayesian ([7], [17], [18]) framework. In [19]
decentralized multihypothesis sequential testing problem is
considered. The authors use a test at each local node, which is
provided in [17] and at the fusion center they use a test loosely
based on a method in [18]. We have found through numerical
experiments that this distributed test requires a very large
number of samples to make a decision. This motivates us to
provide a simple and practically relevant distributed algorithm
for multihypothesis sequential testing.

We propose a simple modification of Test-D1 in [17] and
for ease of reference we call this modification as MTest-D1.
The test, MTest-D1, is as follows. Define

Zi,jl (k) = max

(
k∑
t=1

log
f il (Xt,l)

f jl (Xt,l)
, 0

)
. (20)

The stopping time at local node l is,

Nl = inf{k : Zi,jl (k) > A for all j 6= i and some i} (21)

where A is an appropriately chosen constant. At time Nl, node
l makes the decision dl = i where i is given in (21).

The modification in the decision at node l compared to Test-
D1 is using a reflected random walk in (20) instead of random
walk in Test-D1. We use this modified test at the local nodes.
Local node l transmits a value bi, when dl = i, to the fusion
center. Hence the transmitting values of each local node would
be {b0, . . . , bM−1}, where bi’s are appropriately chosen. Using
physical layer fusion in the current setup would cause a lot
of confusion. Thus the nodes transmit data using TDMA. We
assume that the fusion center has i.i.d. zero mean Gaussian
noise Zk with variance σ2. At the fusion center we run
another multihypothesis sequential test of the form (21) with
hypothesis Gm : Yk ∼ fmFC = N (bm, σ

2), m = 0, . . . ,M−1.
Define, for i, j,= 0, . . . ,M − 1

Zi,jFC(k) = max

(
k∑
t=1

log
f iFC(Yt)

f jFC(Yt)
, 0

)
.

The stopping time at the fusion center is,

N = inf{k : Zi,jFC(k) > B for all j 6= i and some i} (22)

where B is appropriately chosen. At time N , the fusion center
selects hypothesis Gi where i is given in (22) and decides
Hi in the decentralized setup. The thresholds A and B can
be different for different hypothesis to enable different PFA
for different hypothesis. We call this decentralized scheme as
DualMTest-D1.

We demonstrate the effectiveness of the proposed algorithm
through a Gaussian mean change example. The number of
hypothesis, M is 5 and the number of local nodes L is
also 5. Fusion center noise has variance 1. Under hypothesis
Hm, Xk,l ∼ N (m, 1), m=0,. . ., M − 1. As there is not much
literature on decentralized multihypothesis sequential testing
with no feedback from fusion center (except [19]), we compare
our algorithm to the decentralized schemes created by a

combinations of existing single node methods. We note that
the distributed algorithm in [19] in our setup provides a
very large expected detection delay. In the local node test
of the distributed algorithm in [19], rejection times of each
hypothesis are found by calculating the likelihood ratio of
all other hypothesis with respect to the hypothesis under
consideration and comparing with a positive upper threshold.
The test stops when all but one of the hypothesis are rejected.
But it can happen that there is a negative drift in any of the
likelihood ratios with respect to more than one hypothesis and
this makes the rejection time of more than one hypothesis to be
very large. Thus this local node test, though it is theoretically
worthy to consider, requires a large average number of samples
to stop. We believe that this can be the reason for a large
expected delay in the algorithm in [19].

For making combinations for comparing distributed algo-
rithms we have considered the following tests at local nodes
and fusion center: Test-D1 and Test-D2 of [17], Test1 and
Test2 of [18], and MSPRT [5] (with equal prior probabilities).
Among them we found that the combination of Test-D1
and our MTest-D1 outperforms other combinations. Hence
in Figure 2 we plot only different configurations of Test-D1
and MTest-D1. Here DualTest-D1 indicates using Test-D1 at
both the local nodes and the fusion center; MTest-D1:Test-D1
is using MTest-D1 at local nodes and Test-D1 at the fusion
center and Test-D1:MTest-D1 uses the other way. PFA is the
probability of false alarm in rejecting the true hypothesis. The
performance is almost same under different hypothesis. Hence
we show the plot of EDD vs PFA only for the true hypothesis
taken as H3. bi = i + 1, 0 ≤ i ≤ M − 1. We use TDMA.
DualMTest-D1, using MTest-D1 at the local nodes as well as
the fusion center gives the best performance.
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Fig. 2. Comparison among different Multihypothesis schemes

VI. CONCLUSIONS

In this paper we have presented several novel algorithms for
decentralized sequential hypothesis testing problem. We start
with two algorithms DualSPRT and SPRT-CSPRT for binary
hypothesis testing scenario when the densities under both the
hypothesis are known. We show that DualSPRT is asymptot-
ically (first order) optimal. SPRT-CSPRT is an improvement



over DualSPRT. Next we discuss GLR-SPRT which can be
used when the densities at the local nodes have parametric
uncertainties. We next consider the scenario when one of
the densities (under H0) is completely known but the other
belongs to a nonparametric family. We use universal source
coding to obtain a good algorithm in this scenario. Finally we
develop a new decentralized multihypothesis algorithm with
no feedback from the fusion center and show its performance
via simulations.

APPENDIX
PROOF OF THEOREM 1

The theorem follows from [15, Theorem 3] if we prove
Theorem 2 of the same paper for DualSPRT. Let PFA = α
and PMD = β. [15, Theorem 2] gives upper bounds for PFA,
PMD, E0(N) and E1(N). We prove that these bounds are
valid for DualSPRT also.

The stopping time of DualSPRT N = min(T0(c), T1(c))
where T0(c) = inf{k : Fk ≤ β0} and T1(c) = inf{k : Fk ≥
β1}. Then,

α = P0{δ rejects H0}
= P0{T1(c) < T0(c)} ≤ P0{T1(c) <∞}
(A)
= E1[exp−FT1(c) 1{T1(c)<∞}]

≤ E1[exp−β1 1{T1(c)<∞}]
(B)
= c

where (A) follows from Wald’s likelihood ratio identity [7]
and (B) follows since β1 = | log c| and P1[T1(c) < ∞] = 1.
Similarly we can prove that β ≤ c. Let

Nl = inf{n ≥ 1 :

n∑
i=1

log
f1,l(Xi,l)

f0,l(Xi,l)
≥ ρl| log c|, }

τl(Nl) = sup{n ≥ 1 :

Nl+n∑
i=Nl+1

log
f1,l(Xi,l)

f0,l(Xi,l)
≤ 0}.

Then,
N ≤ max

1≤l≤L
(Nl + τl(Nl) + T )

≤ max
1≤l≤L

Nl +

L∑
l=1

τl(Nl) + T (23)

where T indicates the stopping time of the fusion center SPRT
after all sensors start transmitting b1. It can be shown that
the fusion center SPRT eventually will have i.i.d observations
that make E1(T ) <∞ [7, Chapter 3]. From [15, p. 2084] for
i.i.d. observations E1(τl(Nl)) < ∞. The expectation of first
term in (23) is also given as | log c|/Jtot +O(

√
| log c|) [15].

Therefore,

E1(N) ≤ | log c|
Jtot

(1 + o(1)).

Similarly we can show for E0(N). This proves [15, Theorem
2].
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